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General motivation

1 Mixing is everywhere

2 Mixing is important
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Introduction

Temperature fluctuations in a turbulent flow

∂θ

∂t
+ u · ∇θ = D∆θ + fθ

where fθ is a source or sink (chemical reactions, local injection, viscous
friction).
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Introduction

Statistics of the temperature field?

∂θ

∂t
+ u · ∇θ = D∆θ + fθ

Introduce: θ = 〈θ〉+ θ′, u(x, t) = 〈u〉+ u′.

∂ 〈θ〉
∂t

+ 〈u〉 · ∇ 〈θ〉+
〈
u′ · ∇θ′

〉
= D∆ 〈θ〉+ 〈fθ〉

and
∂θ′

∂t
+ 〈u〉 · ∇θ′ + u′ · ∇ 〈θ〉+ u′ · ∇θ′ −

〈
u′ · ∇θ′

〉
= D∆θ′ + f ′θ

No mean flow 〈u〉 = 0
Incompressibility, homogeneous fluctuations: 〈u′ · ∇θ′〉 = ∇ · 〈u′θ′〉 = 0,

∂ 〈θ〉
∂t

= D∆ 〈θ〉+ 〈fθ〉

and
∂θ′

∂t
+ u′ · ∇θ′ = D∆θ′ + f ′θ − u′ · ∇ 〈θ〉
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Introduction

Evolution of the variance of temperature fluctuations

〈
θ′
[
∂θ′

∂t
+ u′ · ∇θ′ = D∆θ′ + f ′θ − u′ · ∇ 〈θ〉

]〉
yields

∂ 1
2

〈
θ′2
〉

∂t
= −D

〈
(∇θ′)2

〉
+
〈
f ′θθ
′〉− 〈u′θ′〉 · ∇ 〈θ〉

Two possible production mechanisms:

1 By a mean scalar gradient

2 By a local injection process.
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Introduction

K41, spectra etc.: A short reminder on the spectral
description of turbulence.

Consider a homogeneous flow.

∂tu + u · ∇u = −1

ρ
∇p+ ν∆u + f , ∇ · u = 0.

Introducing:

K = 1
2

〈
(u)2

〉
,

P = 〈f · u〉,
〈ε〉 = ν

〈
(∇u)2

〉
we derive

K̇ = P − 〈ε〉
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Introduction

K41, spectra etc.: A short reminder on the spectral
description of turbulence.

The averaged energy budget is K̇ = P − 〈ε〉.

∫
E(k)dk = K

and the evolution-equation,

dE(k)

dt
= T (k) + P (k)−D(k)

with ∫
P (k)dk = P = 〈f · u〉 , (1)∫

D(k)dk =

∫
2νk2E(k)dk = 〈ε〉

Importance of T (k)?

∫ [
Ė(k) = T (k) + P (k)−D(k)

]
dk (2)

K̇ = P − 〈ε〉+

∫
T (k)dk (3)

→
∫
T (k)dk = 0.
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Introduction

Spectral balance

0 = T (k)+P (k)−D(k)
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Introduction

Energy flux and transfer

unclosed term. How to model?
Since

∫
T (k)dk = 0

we can write

T (k) = −∂kΠ(k)

where Π(k = 0) = Π(k =∞) = 0.

Simplest model: Π(k) = F (k,E(k)). Dimensional analysis1 →

Π(k) = CKovE(k)3/2k5/2

1
Kovaznay J. Aeronaut. Sci. 1948
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Introduction

Spectral flux
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Introduction

K41 and Kovaznay’s closure

In the inertial range
∫
T (k)dk ≈ −

∫ k
0 P (k)dk

∫ k

0
P (k)dk = CKovE(k)3/2k5/2

we find

E(k) = C
−2/3
Kov

[∫ k

0
P (k)dk

]2/3
k−5/3.

If
∫ k
0 P (k)dk = P = 〈ε〉 ,

E(k) ∼ 〈ε〉2/3 k−5/3.
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Introduction

K41 or O41?
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Introduction

K41 or O41?
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Introduction

Broadband forcing: no K41
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Introduction

Broadband forcing and Kovaznay’s closure

Since

E(k) = C
−2/3
Kov

[∫ k

0
P (k)dk

]2/3

k−5/3.

and ∫ k

0
P (k)dk = εin(kL)1−α

we find

E(k) ∼
[
εin(kL)1−α]2/3 k−5/3 (4)

∼ k−1− 2
3
α

e.g. Mazzi and Vassilicos 2004
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Introduction

When do we not find K41?

1 Low Reynolds number (no scale separation)

2 Broadband forcing with kα, α > −1.

3 Transfer is not local in k-space

4 Internal intermittency
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Introduction

Passive scalar

d1
2

〈
θ2
〉

dt
= 〈fθθ〉 − 〈εθ〉

∫
Eθ(k)dk =

〈
θ2
〉

and the evolution-equation,

dEθ(k)

dt
= Tθ(k) + Pθ(k)−Dθ(k)

with

∫
Pθ(k)dk = 〈fθθ〉 , (5)∫

Dθ(k)dk =

∫
2Dk2Eθ(k)dk = 〈εθ〉 (6)

→
∫
Tθ(k)dk = 0.

Need to model Tθ(k) and Pθ(k)
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Introduction

Corrsin-Obukhov scaling

Extending the ideas of Kovaznay to the passive scalar 2

Tθ(k) = −∂kΠθ(k)

with Πθ(k) = F (E(k), Eθ(k), k),

Πθ(k) = CθEθ(k)E(k)1/2k5/2

Leading to

Eθ(k) ∼
[∫ k

Pθ(k)dk

]
〈ε〉−1/3 k−5/3

2
Rubinstein & Clark, J. Turbul. 2013
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Introduction

Viscous heating

∂ 1
2

〈
θ2
〉

∂t
= −D(∇θ)2 +

〈
f ′θθ
′〉− 〈u′θ〉 · ∇ 〈θ〉
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Viscous heating

Motivation

Every viscous flow converts kinetic energy into heat.

What does the temperature field look like in a turbulent flow?

How large are the fluctuations?

Figure : from Watanabe et al., New Journal of Physics (2004)
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Viscous heating

Introduction: turbulence and injected energy

∂tK = P − 〈ε〉 .

In a steady state, we constantly inject energy: Kinj =
∫ t

0 P (t)dt
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Viscous heating

How much heat?

Using Taylor’s zeroth order lawa

〈ε〉 ∼ U3/L

Consider an air-experiment
L = 1m, U = 1m/s → 〈ε〉 ≈ 1m2/s3.
This is the kinetic energy we need to inject per
second, per m3 of fluid to keep the flow going.
In a closed system this will heat the fluid,

d 〈θ〉
dt

=
〈ε〉
cp

with cp = 103J/kg/K the specific heat.
After one hour: ∆ 〈θ〉 = 3600 ∗ 1/103 = 3.6K.

a
Taylor, Proc. R. Soc. Lond 1935; Vassilicos ARFM 2015.
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Viscous heating

How large are the fluctuations? What is their size?

The average heat is easily estimated, but the fluctuations? Only few
relevant studies3.
Introduce: θ = 〈θ〉+ θ′, ε(x, t) = 〈ε〉+ ε′

∂θ′

∂t
+ u · ∇θ′ = D∆θ′ +

ε′

cp

so that
d1

2

〈
θ′2
〉

dt
=
〈ε′θ′〉
cp
− 〈εθ〉

where 〈εθ〉 = D
〈
(∇θ′)2

〉
.

Unclosed equation → we need Simulation/Theory/Experiment.
First try: spectral model.

3
De Marinis et al. JFM 2013, Cadot & Plaza APS 2005
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Viscous heating

How to model the viscous heat production?
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Viscous heating

How to model the viscous heat production?

Pθ(k) = F (Eθ(k), E(k), ν, cp, k)

A suggestion
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Viscous heating

Problem with this model

Pθ ∼
ν

cp
k5/2E(k)Eθ(k)1/2

Consider Eθ(t = 0) = 0 what happens?
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Viscous heating
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Viscous heating

Turbulence and analytics

Whenever we try to do anything analytical in turbulence we start by
assuming

1 isotropy

2 Gaussianity

Or at least expansions around isotropy/Gaussianity
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Viscous heating

Derivation EDQNM

Analytical closures, derived from Navier-Stokes. QN 4, DIA, LHDIA, TFM 5, EDQNM 6, LMFA7

[
∂
∂t

+ νk2
]
ûu = f( ˆuuu)[

∂
∂t

+ νk2
]

ˆuuu = f2( ˆuuuu)

QN: Quasi Normal ˆuuuu ≈
∑
ûu ûu

4
Millionschikov, Dokl. Akad. Nauk SSSR 1941, Proudman & Reid, Phil. Trans. R. Soc. Lond. A 1954

5
Kraichnan JFM 1959; PoF 1965; JFM 1970

6
Orszag JFM 1970, Vignon & Cambon PoF 1970

7
Bos & Bertoglio JoT 2013

Wouter Bos Temperature fluctuations in turbulence Les Houches, March 2016 29 / 78



Viscous heating

Analytical closures

  

In other words, the zero-fourth-cumulant theory implies 
that the triple moment is non-zero only on account of 
interaction between its own three Wavenumbers. Such a 
theory may be termed a ``direct interaction theory.'' 
Kraichnan's theory is of this kind, and down at this conceptual 
level,therefore, it is closely related to zero-fourth-cumulant 
Theories. Indeed both theories tend to have the same very general 
properties and to stand or fall by similar criteria.

                                                     
            

                          
                                                                                                                   …

Ian Proudman

Robert Kraichnan
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Viscous heating

Analytical closures
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Viscous heating

Derivation EDQNM

Analytical closures, derived from Navier-Stokes. QN 8, DIA, LHDIA, TFM 9, EDQNM 10,
LMFA11

[
∂
∂t

+ νk2
]
ûu = f( ˆuuu)[

∂
∂t

+ νk2
]

ˆuuu = f2( ˆuuuu)

QN: Quasi Normal ˆuuuu ≈
∑
ûu ûu

ED: Eddy Damping[
∂
∂t + νk2 + µ(k)

]
ˆuuu =

∑
ûu ûu µ(k) = τ(k)−1

µ(k) ∼ 〈ε〉1/3 k2/3

M: Markovianization
8

Millionschikov, Dokl. Akad. Nauk SSSR 1941, Proudman & Reid, Phil. Trans. R. Soc. Lond. A 1954
9

Kraichnan JFM 1959; PoF 1965; JFM 1970
10

Orszag JFM 1970, Vignon & Cambon PoF 1970
11

Bos & Bertoglio JoT 2013

Wouter Bos Temperature fluctuations in turbulence Les Houches, March 2016 32 / 78



Viscous heating

EDQNM

Resulting expression,

Pθ(k) = 16πk2
(
ν

cp

)2 ∫∫
δ(k − p− q)

∫ t

0
Gθ(k, t, s)

[
(pmqm)2Φij(p, t, s)Φij(q, t, s)

+ 2pmqmpiqjΦaj(p, t, s)Φia(q, t, s)

+ pipjqmqnΦmn(p, t, s)Φij(q, t, s) ] dsdpdq

where Φij(k) = FT [〈ui(x)uj(x + r)〉]
Structure of this expression:

Pθ ∼
(
ν

cp

)2

k5E(k)2τ(k)

instead of
Pθ ∼

ν

cp
k5/2E(k)Eθ(k).

This seems more plausible.
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Viscous heating

Numerical integration
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Figure : Left: Energy spectrum, normalized by Kolmogorov variables, for three different
Reynolds numbers. Right: corresponding temperature fluctuation spectrum, generated by
frictional heating (Pr = 1).
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Viscous heating

Analytical analysis of these equations

Pθ(k) ∼
(
ν

cp

)2

k5E(k)2τ(k) and τ(k) ∼ 〈ε〉−1/3 k−2/3

Eθ(k) ∼
[∫ k

k0

Pθ(k)dk

]
〈ε〉−1/3 k−5/3,

leading to,

Eθ(k) =
(
ν
cp

)2
〈ε〉2/3 k1/3.

Wouter Bos Temperature fluctuations in turbulence Les Houches, March 2016 35 / 78



Viscous heating

How large are the heat fluctuations?

〈
θ2
〉

=

∫ kη

0
Eθ(k)dk =

〈ε〉 ν
c2
p

In the air experiment ν = 10−5m2s−1, 〈ε〉 = 1m2s−3, cp = 103Jkg−1K−1,

〈
θ2
〉

=

∫ kη

0
Eθ(k)dk ∼ 10−11K2

That is not very large since
〈
θ2
〉
∼ Re−1 (or ∼ R−2

λ ).

Bad news for the experimentalist: θ′ ≈ 3µK
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Viscous heating

Validation by Direct numerical simulations
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Viscous heating

DNS

Carried out by Robert Chahine Andrey Pushkarev

PhD student LMFA, Ecole Centrale de Lyon PostDoc LEGI Grenoble
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Viscous heating

Basic equations

Navier-Stokes for an incompressible flow:

∂u

∂t
+ (u.∇)u = −∇p

ρ
+ ν∆u + f

∇.u = 0.

Advection-diffusion equation + viscous friction term:

∂θ

∂t
+ ui

∂θ

∂xi
= D

∂2θ

∂x2
i

+
ε

cp
.

Pseudo-spectral code 2563, periodic boundary conditions, large-scale
forcing.
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Viscous heating

Scaling of the energy spectrum

The normalized energy spectrum using quantities 〈ε〉 , L is

Ẽ(k) = E(k)

〈ε〉2/3L5/3
∼ (kL)−5/3

10
-8

10
-6

10
-4

10
-2

10
0

10
1

10
2

E~
(k

L
)

kL

(kL)
-5/3

(kL)
-5/3

Rλ=17
Rλ=30
Rλ=45
Rλ=61
Rλ=77

The enstrophy-isosurfaces show small-scale correlation, in agreement with
k2E(k) ∼ k1/3
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Viscous heating

DNS Results, visualizations

Temperature fluctuations are correlated at large scales,

Positive fluctuations exist in the zones of where many worms are
clustered.

This does not seem in agreement with the previous results!
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Viscous heating

Scaling of the temperature fluctuations spectrum

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
1

10
2

E~
θ

(2
) (k

L
)

kL

(kL)
-5/3

(kL)
1/3

Rλ=17
Rλ=30
Rλ=45
Rλ=61
Rλ=77

What is wrong?
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Viscous heating

Lagrangian picture

Recall the equation for θ:

∂θ

∂t
+ ui

∂θ

∂xi
= D

∂2θ

∂x2
i

+
ε′

cp
.

In inertial range:

Dθ

Dt
=
ε′

cp
.

A fluid partice is heated by ε′ and
deformed by |∇u|

Wouter Bos Temperature fluctuations in turbulence Les Houches, March 2016 43 / 78



Viscous heating

Evolution of the spectrum of the heat fluctuations

Formal expression for the temperature fluctuation:

θ(x, t) = θ(x, t|0) +
1

cp

∫ t

0

∫
gθ(x, t|y, s)ε′(y, s)dyds,

∂Eθ(k)
∂t = Tθ(k) + Pθ(k)− 2Dk2Eθ(k),

The production term is proportional to

Pθ(k) ∼ FT
[〈
ε′(x, t)θ(x + r, t)

〉
/cp
]

〈
ε′(x, t)θ(x + r, t)

〉
/cp =

1

c2
p

∫ t

0

∫ 〈
gθ(x + r, t|y, s)ε′(x, t)ε′(y, s)

〉
dyds.

And therefore Pθ(k) ∼ τ(k)
c2p
Eε(k)
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Viscous heating

Evolution of the spectrum of the heat fluctuations

Formal expression for the temperature fluctuation:

θ(x, t) = θ(x, t|0) +
1

cp

∫ t

0

∫
gθ(x, t|y, s)ε′(y, s)dyds,

∂Eθ(k)
∂t = Tθ(k) + Pθ(k)− 2Dk2Eθ(k),

The production term is proportional to

Pθ(k) ∼ FT
[〈
ε′(x, t)θ(x + r, t)

〉
/cp
]

〈
ε′(x, t)θ(x + r, t)

〉
/cp =

1

c2
p

∫ t

0

∫ 〈
gθ(x + r, t|y, s)ε′(x, t)ε′(y, s)

〉
dyds.

And therefore Pθ(k) ∼ τ(k)
c2p
Eε(k)

Wouter Bos Temperature fluctuations in turbulence Les Houches, March 2016 44 / 78



Viscous heating

EDQNM prediction for Eε(k)

Comparing

Pθ(k) ∼ τ(k)

c2
p

Eε(k),

with

Pθ ∼
τ(k)

c2
p

ν2 〈ε〉4/3 k5/3,

we can deduce that EDQNM (DIA) predicts

Eε(k) ∼ ν2 〈ε〉4/3 k5/3.

Wouter Bos Temperature fluctuations in turbulence Les Houches, March 2016 45 / 78



Viscous heating

Possible problems

The expression Pθ(k) ∼ τ(k)
c2p
Eε(k) seems to be consistent with the

previous results.

The timescale is wrong?

The dissipation-rate spectrum Eε(k) is wrong?
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Viscous heating

Experimental results: where to search?
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Viscous heating

Monin & Yaglom pp. 605-608

Atmospheric Measurements of Eε(k)

Gurvich & Zubkovskii 1963; Pond & Stewart 1965; Van Atta & Chen 1970:
Eε(k) ∼ k−α, 0.5 < α < 0.7.
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Viscous heating

DNS prediction for Eε(k)

Dissipation rate spectra at Rλ ≤ 77:
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Is this a low Reynolds number effect?
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Viscous heating

DNS prediction for Eε(k) (higher Reynolds number,
Rλ = 172)
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Viscous heating

Why is the dissipation rate spectrum long-range correlated?

Read the intermittency literature starting with the famous
Marseille Turbulence Conference 1961.
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Viscous heating

Why is the dissipation rate spectrum long-range correlated?

Consider the energy-injection fluctuations
〈
(P − 〈P 〉)2

〉
.

Because the injection fluctuations are !

Wouter Bos Temperature fluctuations in turbulence Les Houches, March 2016 52 / 78



Viscous heating

Novikov-Yaglom estimate of the dissipation rate
fluctuations

Yaglom-Novikov estimate:

Eε(k) ∼ 〈ε〉2 L(kL)−1+µ

with 0.3 < µ < 0.5, intermittency parameter, characterizing the space
filling of the dissipation rate.
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Viscous heating

Phenomenological theory

Using Yaglom’s expression,

Eε(k) ∼ 〈ε〉2 L(kL)−1+µ,

with Pθ(k) ∼ τ(k)
c2p
Eε(k) and τ(k) ∼ ε−1/3k−2/3 we have

∫ k

k0

Pθ(k)dk =
〈ε〉5/3 L2/3

c2
p

,

so that

Eθ(k) ∼
[∫ k

k0

Pθ(k)dk

]
〈ε〉−1/3 k−5/3

=⇒ Eθ(k) ∼ 〈ε〉
4/3L2/3k−5/3

c2p
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Viscous heating

Reynolds number dependence of θ2

〈
θ2
〉

=
∫
Eθ(k)dk ∼ (〈ε〉L)4/3

c2p

EDQNM: θ2
(1) ∼ 〈ε〉ν

c2p

→ θ̃2
(1)

= θ2 c2p
〈ε〉ν

Yaglom: θ2
(2) ∼ (〈ε〉L)4/3

c2p

→ θ̃2
(2)

= θ2 c2p
(〈ε〉L)4/3 10
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Intermediate conclusion

Summarize

Implications for the value

θrms ∼
〈ε〉1/2 L2/3

cp
∼ 10−3K

Small but measurable!

P.S. Also the timescale was wrong
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Mean scalar gradient

Scalar injection by a uniform scalar gradient

∂θ′

∂t
+ u′ · ∇θ′ = D∆θ′ + f ′θ − u′ · ∇ 〈θ〉

Wouter Bos Temperature fluctuations in turbulence Les Houches, March 2016 57 / 78



Mean scalar gradient

Scalar injection by a uniform scalar gradient

Away from the walls

∂ 〈θ〉
∂t

= 0

and
∂θ′

∂t
+ u′ · ∇θ′ = D∆θ′ +−u′z∂z 〈θ〉

Anisotropy induced by the mean gradient
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Mean scalar gradient

Small scale isotropy

O’Gorman and Pullin 2005
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Mean scalar gradient

Isotropy and statistical correlations

One point correlations in isotropic, mirror symmetric, turbulence
are a function of δij!
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Mean scalar gradient

Isotropy and statistical correlations

One point correlations in isotropic, mirror symmetric, turbulence

Vectors

〈Ai〉 = 0

For example 〈ui〉 = 0, 〈∂iθ〉 = 0

Rank 2 tensors

〈Aij〉 = aδij

Examples: 〈uiuj〉 = 2
3Kδij ,〈

∂θ
∂xi

∂θ
∂xj

〉
= 1

3(εθ/D)δij .
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Mean scalar gradient

Isotropy and statistical correlations

Rank 3 tensors

〈Aijm〉 = 0

Example
〈
∂θ
∂xi

∂θ
∂xj

∂θ
∂xm

〉
Rank 4 tensors

〈Aijmn〉 = aδijδmn + bδimδjn + cδinδjm

Example:

〈
∂θ

∂xi

∂θ

∂xj

∂um
∂xn

〉
= − 1

30
(2δijδmn − 3δimδjn − 3δinδjm) 〈γiγjsij〉 .
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Mean scalar gradient

Isotropy and statistical correlations

Rank 5 tensors

〈Aijmnl〉 = 0 (7)

Rank 6 tensors

From Champagne JFM 1978
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Mean scalar gradient

Isotropy and statistical correlations

Rank 8 tensors

Hierro and Dopazo PoF 2003
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Mean scalar gradient

Anisotropy, axisymmetric

Everything is function of δij and the axis of symmetry ei

vectors

〈Ai〉 = aei

Example
〈
∂θ
∂xi

〉
= Γei, 〈uiθ〉 = 〈wθ〉 ei

Rank 2 tensors

〈Aij〉 = aδij + beiej

Rank 3 tensors

〈Aijm〉 = aδijem + bδimej + cδjmei

Example

〈γiγjγm〉 =
1

3

〈
γ3

3

〉
(eiδjm + ejδim + emδij) .
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Mean scalar gradient

Small scale anisotropy

Brethouwer 2000
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Mean scalar gradient

How anisotropic are the small scales?

We will consider two quantities 〈wθ〉 and
〈
∂θ
∂x3

∂θ
∂x3

∂θ
∂x3

〉
.

Introduce ∫
Fwθ(k)dk = 〈wθ〉

A measure for isotropy:

ρwθ(k) =
Fwθ(k)√
E(k)Eθ(k)
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Mean scalar gradient

How anisotropic are the small scales?

Experiments/closure/numerics12

Fwθ(k) ∼ Γε1/3k−7/3

And
E(k) ∼ ε2/3k−5/3, Eθ(k) ∼ εθε−1/3k−5/3

we find

ρwθ(k) =
Fwθ(k)√
E(k)Eθ(k)

∼ (kL)−2/3

12
Lumley 1964,’67, Mydlarski and Warhaft 1998, WB et al. 2005, Gotoh and Watanabe 2007
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Mean scalar gradient
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Mean scalar gradient

Another measure for isotropy

In an isotropic scalar field 〈(
∂θ

∂z

)3
〉

= 0

in an anisotropic field: not.
Small scale anisotropy: 〈(

∂θ
∂z

)3〉〈(
∂θ
∂z

)2〉3/2
6= 0
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Mean scalar gradient

How evolves the anisotropy

Introduce ∂θ
∂xi
≡ γi and ∂ui

∂xj
≡ sij

∂

∂t

〈
γ33
〉

+
∂

∂xj

〈
ujγ

3
3

〉
= −3 〈γ3γ3γjs3j〉 − 〈γ3γ3s33〉Γ +D...

In an isotropic flow 〈γ3γ3s33〉 6= 0.
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Mean scalar gradient

Another measure for isotropy

Exact relation:

〈γ3γ3s33〉 ∼
∫
k2Tθ(k)dk

Good approximation13

∫
k2Tθ(k)dk ≈

∫
2Dk4Eθ(k)dk ≈ εθε1/2ν−3/2

Starting from isotropy we have
∂

∂t

〈
γ33
〉

= −〈γ3γ3s3j〉Γ

We can thus estimate
〈
γ33
〉
≈ −T εθε1/2ν−3/2.〈

γ33
〉〈

γ23
〉3/2 ∼ Γεθε

1/2ν−3/2T
(εθ/ν)3/2

∼
Γε1/2

ε
1/2
θ

T

But what is T

13
Batchelor, CUP, 1953
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Mean scalar gradient

Timescale

In general, gradient-statistics are correlated over a Kolmogorov-time, so that T ∼ (ε/ν)1/2

Implication: 〈
γ33
〉〈

γ23
〉3/2 ∼ Re−1/2

→ for large Reynolds numbers small scale isotropy.
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Mean scalar gradient

Experimental observations

Experimental results and DNS

Why?
Gibson et al. 1970, Pumir, PoF 1994, Mydlarski and Warhaft 1998
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Mean scalar gradient

A look at the equations

Needs the definition of a timescale.
Two choices:
T = L/U
or
T = ε−1/3k−2/3 → T (kη) = (ν/ε)−1/2
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Mean scalar gradient

Try !

Pink: T = ε−1/3k−2/3; White: T = L/U
We seem to need the integral timescale (unlike the velocity gradient).
Why?
Mydlarski, Pumir et al. PRL 1998
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Mean scalar gradient

Analogy with Burgulence

We know that in forced Burgulence,

∂tu + u · ∇u =
1

T
u

The Lagrangian correlation time is Θ(r) ∼ T . Since fluid particles
decorrelate only due to the forcing mechanism or in the presence of shocks
(Kraichnan 1968).
T is the time it takes for a fluid particle to encounter a shock.
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Mean scalar gradient

Analogy?

∂tu + u · ∇u =
1

T
u

compared to
∂tθ + u · ∇θ = −u3Γ
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Conclusions

Conclusions

On scalar anisotropy

The Lagrangian time-scale of the scalar is the integral time-scale (cf.
Burgulence)

On viscous heating

Viscous temperature fluctuations are a large-scale quantity

For Rλ = 1000 closure theory will misestimate θ2 by an error of the
order of 106!

To the experimentalist: you can be the first to measure these fluctuations !
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