Cannonballs in (dusty) turbulence Drag, Accretion & Concentrations

H. Homann

Laboratoire Lagrange, Université de Nice Sophia Antipolis, Observatoire de la Côte d'Azur, Nice

in collaboration with

J. Bec, T. Guillot, P. Tanga, F. Laenen Laboratoire Lagrange, Université de Nice Sophia Antipolis, Observatoire de la Côte d'Azur, Nice

R. Grauer

Institut für theoretische Physik I, Ruhr-Universität Bochum, Germany

C.W. Ormel

Anton Pannekoek Institute for Astronomy, University of Amsterdam, The Netherlands

S. Ida

Earth-Life Science Institute, Tokyo Institute of Technology, 152-8550 Tokyo, Japan

Motivation - Applications

CONTEXT: Large particle moving through a (turbulent) fluid seeded with small inertial particles:

Sekiya and Takeda (2003)

Collision rates of small particles with big body

Motivation – Physical problem

Interaction of big body with stream of small inertial particles

- Small particle collision rates
- Wake interactions

Influence of turbulent velocity fluctuations

- Drag force
- Wake modification
- Collision rates

Numerical challenges

What does we need?

- Equations and solver for fluid motion No-slip boundary condition on big particle High Reynolds numbers
- Equations for small particle motion Integration of many trajectories for statistics

Small vs large particles

Analytically known drag force and flow structure

Stokes drag
$$\frac{d\boldsymbol{v}}{dt} = \frac{3\nu}{a^2}(\boldsymbol{u}-\boldsymbol{v})$$

u known ightarrow ODE for small particle trajectories

What if particle the particle is bigger?

→ handle the boundary layer!

The numerical problem

FIG. 1. Sketch of the immersed boundary.

- Solving dynamics on complete grid
- Imposing boundary conditions on S

Advantages :

- Arbitrary shapes of S
- Easy to implement
- Compatible with Fourier-spectral codes

Shortcomings :

• Accuracy (order, boundary layer)

Numerical method

• Fluid: Navier-Stokes equations by pseudo-spectral method

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p + \boldsymbol{f} + \nu \nabla^2 \boldsymbol{u}, \quad \nabla \cdot \boldsymbol{u} = 0 \qquad \langle \boldsymbol{u} \rangle = U \boldsymbol{e}_x$$

u: velocity field, ν : kinematic viscosity, $f = f_e + f_b$: forcing (external + boundary)

• Small particles : heavy particles with low Re → Stokes drag

$$\ddot{X} = rac{1}{ au} \Big[oldsymbol{u}(oldsymbol{X},t) - \dot{X} \Big]$$
 $\begin{aligned} & au = 2
ho_{
m p} a^2/(9
ho_{
m f}
u) & ext{particle response time} \\ & ext{St} = au/(d/U) \end{aligned}$

Effect of inertia based on particle crossing time

• No-slip boundary conditions: penalty method (direct forcing, Fadlun et al. 2000) :

$$oldsymbol{V} = oldsymbol{u}|_{sphere} = 0$$

discretized Navier-Stokes equation : replacing $\mathbf{u}^{n+1} \to V^{n+1}$ yields force

$$u^{n+1} - u^n = \Delta t (rhs^n + f_b^n)$$

$$f_b^n = -rhs^n + (V^{n+1} - u^n)/\Delta t$$
7

Numerical method – bounday conditions

Advantages:

- Standard Fourier-solver for incompressible turbulence
- Massive parallel codes
- Easy to implement

Difficulties:

- Truncated Fourier representation and discontinuities
- No-slip condition and divergence-freeness at the boundaries

Discontinuities in the derivative of the velocity field

- → lost spectral accuracy (non-smooth)
- \rightarrow Gibbs oscillations at the discontinuities

Smoothed particle: volume-fraction scheme (Fadlun et al. 2000, Pasquetti et al. 2008)

- reduces Gibbs-oszillation
- allows for a moving particle
- in the spirit of a volumic forcing

$$\chi = \frac{1}{2h} \int_{(i-1)h}^{(i+1)h} \chi dx$$

Numerical method – no-slip & solenoidal

Main troubles :

- Operations boundary conditions (B) and divergence-freeness (P) do not commute !
- Fourier : poisson-equation for p with periodic boundary condtions

Solution : pressure predictor (Brown et al. 2001)

$$\begin{split} \tilde{u}^{n+1} &= u^n + \Delta t \left[-(u^n \cdot \nabla) u^n - \nu \Delta u^n - \nabla p^n \right] & \Delta p^n = \nabla \cdot \left[(u^n \cdot \nabla) u^n \right] \\ \tilde{\tilde{u}}^{n+1} &= B(\tilde{u}^{n+1}) \equiv \tilde{u}^{n+1} + f_b^n \\ u^{n+1} &= P(\tilde{\tilde{u}}^{n+1}) & \text{Usually no predictor } \nabla p - \text{only projection} \end{split}$$

Benchmark-setup :

Numerical windtunnel

- regular grid with e.g. 256x256x1024 grid-points
- periodic boundary conditions at the surfaces
- penalty for particle and smoothing region

Numerical method – no-slip & solenoidal

Main troubles :

- Operations boundary conditions (B) and divergence-freeness (P) do not commute !
- Fourier : poisson-equation for p with periodic boundary condtions

Solution : pressure predictor (Brown et al. 2001)

$$\begin{split} \tilde{u}^{n+1} &= u^n + \Delta t \left[-(u^n \cdot \nabla) u^n - \nu \Delta u^n - \nabla p^n \right] & \Delta p^n = \nabla \cdot \left[(u^n \cdot \nabla) u^n \right] \\ \tilde{\tilde{u}}^{n+1} &= B(\tilde{u}^{n+1}) \equiv \tilde{u}^{n+1} + f_b^n \\ u^{n+1} &= P(\tilde{\tilde{u}}^{n+1}) \end{split} \quad \text{Usually no predictor } \nabla p \quad - \text{ only projection} \end{split}$$

Benchmark-setup :

Numerical method - benchmarks

Numerical method - convergence

Convergence rate:

Boundary layer thickness $\delta_b \sim Re^{-1/2}$

Resolution : $D/\Delta_x \sim \delta_b/\Delta_x$

for Re = const

Why -3/2?

Benchmark - wake

Mean velocity deficit : $\Delta U = 1 - U(x, 0, 0)/U_c \sim x^{-1}$

(Wu & Faeth 1994, Bagchi & Balachandar 2004)

Results

- 1) Particle collision rates
- 2) Particle-wake interactions
- 3) Drag force

Problem Parameters : Particle Reynolds number $100 \le Re_p = \frac{d U_c}{\nu} \le 1000$

Fluid Reynolds number

 $0 \le \frac{Re}{\nu} = \frac{u_{rms}L}{\nu} \le 3000$

Turbulent intensity

 $0 \le \mathbf{I} = \frac{u_{rms}}{U_c} \le 1.2$

Dust Stokes number $0 \le \tau \le 80$

Fig. 1. Instantaneous streamlines of the gas flow and dust particles (St = 0.8) for I=0 (laminar), I = 0.29 (weakly turbulent), and I = 1.18 (strongly turbulent) from top to bottom. Note that while St = 0.8 for all shown cases, $St_{\eta} = 1.25$ for I = 0.29 and $St_{\eta} = 9.8$ for I = 1.18 so that the clustering properties of the shown particles change from one I to another.

Laminar (uniform) inflow

Application: Wet deposition of aerosols by falling raindrops

 $\gamma(d) = \int_0^\infty \pi/4 U_t(D) E(d, D) n(D) dD$

LAMINAR collision statistics

Where do collisions happen ?

- Collisions are concentrated around the axis of symmetry
- Virtually no backward collision happen

LAMINAR Collision statistics

19

LAMINAR Collision statistics

Small St limit :

- Critical Stokes number St_c
- Euler flow : $St_c = 1/24$
- Stokes flow : $St_c = 0.6$
- Re-collapse with linear slope

fit:
$$\frac{St - St_c}{St - St_c + 2/3}$$

Slinn :
$$\left(\frac{St - St_c}{St - St_c + 2/3}\right)^{3/2}$$

Large St limit :

- Re-collapse with $E(\mathrm{St}) \sim 1 - 1/St$

Slinn's fit (1974)

21

Turbulent inflow

TURBULENT Collision Statistics

- Turbulence increases significantly the collision efficiency
- Collision efficiency can be larger than unity
- Probably no critical Stokes number

Turbulence effects on collision rate I

- 1) Fluctuating head wind
 - Increase of collision rate (higher Re → higher collision rate)
 - Velocity distribution → no critical Stokes number
- 2) Randomization of impact direction and position (→ backward collisions)

3) Increase of swept volume

turbulent volume > laminar volume simple computation for sinusoidal motion:

$$E_I(St) = E_0(St)(1 + \frac{I^2}{1 + St^2})$$

Allows for collision rate > 1!

Consequences for planet formation

hydro

-4

0

-6

د/

2

geometric

-2 Log(Dust size) [cm]

1.0 au, α=10⁻², MMSN

0

distances and turbulent intensities

alpha parameter: Turbulent eddy viscosity

$$\nu_t = \alpha \, c_s \, H$$

Importance of collision speeds

10

 $10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 10^{5}$ grain size [cm]

-2

Windmark et al. (2012)

Measured collision speeds

- Turbulent fluctuations lead to velocity distribution
- Distribution fairly modeled by non-central chi-squared distribution
- Turbulence increases mean impact speed with maximum close to St=1
- Standard deviation approx. proportional to turbulence intensity

Small particle wake interactions

Laminar (uniform) inflow

Dust in the wake

What happens to particles that passed the sphere ?

Okubo-Weiss parameter

$$\Delta = \left(\frac{\det[\hat{\sigma}]}{2}\right)^2 - \left(\frac{\operatorname{tr}[\hat{\sigma}^2]}{6}\right)^3$$

 $\hat{\sigma} = \partial_i u_j$ strain matrix

 $\Delta < 0$ straining regions $\Delta > 0$ rotational regions

Particles interact with the shed structures – they are ejected ²⁹

Mean particle densities

Experimental measurement (Jacober and Matteson 1990)

FIGURE 7. Axial and radial particle concentration distribution in the sphere wake for 10- μ m particles and a free stream velocity of 6.1 m/s (radial and axial distances in radii).

The wake : Mean particle densities

Jacober and Matteson : wake concentrations from collapsing jet

But: Concentrations only for turbulent wakes !

Concentration in the wake due to turbulent fluctuations 31

Wake concentration mecanism

Maximum of Δ depends on stream-wise position

Resonant ($\mathrm{St}{\simeq}$ 1) ejection from vortices determines starting point of overconcentration

Inter-particle collisions

Rough collision estimator: $p_c(x) = -\langle n(x)^2 \rangle \langle w^-(x) \rangle$ $n(x)^2$: number of particle pairs approaching particles $w^-(x)$ longitudinal velocity difference

Soon with "real" inter-dust collisions

3

2

 r/r_0

The drag force

Particle in a laminar flow

Particle in a turbulent flow

The drag coefficient and flow profiles

Drag-coefficient

$$C_D = \frac{8F}{\rho U_c^2 \pi d^2}$$

$$Re_p = \frac{d U_c}{\nu}$$

F drag force

- U_c inflow speed
- *d* sphere diameter
- ρ fluid density

ν

fluid viscosity

 $23 \lesssim Re_p \lesssim 350$

Complicated drag force and boundary layer already for a constant inflow

 $350 \leq Re_p \leq 10^5$

The drag coefficient and flow profiles

NOW: Large sphere moving through turbulent fluid

- How does the drag force depend on turbulent fluctuations?
- How is the fluid affected?

Dimensionless parameters :

- Particle Reynolds number $20 \leq Re_p = \frac{dU_c}{\nu} \leq 400$
- Fluid Reynolds number
- Turbulent intensity

 $0 \leq Re = \frac{u_{rms}L}{\nu} \leq 930$ $0 \leq I = \frac{u_{rms}L}{U_c} \leq 0.6$

Drag force from immersed boundary method: $\int_{S} \nabla \cdot \mathbf{T} dV = \int_{S} \mathbf{f}_{b} dV$

$$\boldsymbol{T} = -p\boldsymbol{I}_3 + \nu(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T)$$
 stress-tensor

Drag force – Large scale effects

Drag force – Small scale effects

Another approach:

Drag increase by modified velocity gradients at the particle surface

Laminar gradient $\sim U_c/d$ $au_{\mathrm{U}} = d/U_c$ Sweeping time Turbulent gradient $u_{\eta}/\eta = \tau_{\eta}^{-1} = \nu^{-1/2} \varepsilon^{1/2}$ $\tau_n = (\nu/\varepsilon)^{1/2}$ Kolmogorov time scale 10^{1} 0.2 Mean drag 0.1 $< F_{D}(1) > / F_{D}(0) - 1$ 10⁰ 0.2 0.4 0.6 0.8 **Rms torque** $< T^{2} > \frac{1/2}{c} / [d < F_{v}^{2} > \frac{1/2}{c}]$ Re=100 Re=200Re=400 $0.18(\tau_{11}/\tau_{n})$ long, Re=20 10⁻² lona. Re=100 X 10 0.1 Re=200 Re=400 • $\tau_{\rm U}/\tau_{\rm n}$ Re=20Re=100 perp. Re=200 perp. Re=400 0.05(τμ/τ.. 0.1 10 τ_U / τ_n

Small and large scales increase the drag on the particle

Shortening of the wake

Turbulent fluctuations significantely reduce wake length

- falls off quadratically
- maximum shifts to the particle surface

Conclusions

Outer turbulence leads to

- more dust particle collisions
- higher dust impact speeds
- increased drag forces
- shortening of the wake

Turbulent wake leads to

- dust concentrations behind the sphere
- inter-dust collisions and heavy modification of the dust size distribution

Homann, Bec, Grauer (2013) JFM 721:155 Homann & Bec (2015) Phys. Fluids 27:053301 Homann, Guillot, Bec, Ormel, Ida, Tanga (2016) to appear in A&A

Perspectives

- Effect of rotation of sphere?
- Gravitational focusing?
- Effect of back-reaction of the particles?

Numerical implementation aspects

How to handle millions (or billions!) of particles in a numerical code?

Particle storage in HPC simulations

Array of Structure (AoS) v

```
VS
```

```
struct Particle
{
```

int id;

```
double pos[3];
double vel[3];
```

```
float mass;
};
```

```
Particle particle;
particle.id = 1;
```

```
list<Particle> particleList;
particleList.push_back(Particle());
```

AoS (Particle = Object) is convenient:

- Modification of particle properties (charge, history)
- Creation/Deletion of particles
- I/O and MPI

```
struct ParticleArray
  vector<int> id;
  vector<double> posX;
  vector<double> velX;
  vector<float> mass;
  void resize(int i) {
    id.resize(i);
    posX.resize(i);
    . . .
  }
  void init() { ... }
  void output() { ... }
};
```

Structure of Array (SoA)

Particle storage: Benchmark for CPUs

Euler-type for-loop over all particles: $\vec{x} + = dt \vec{v}$

AoS are (much) slower than SoA!

- Vectorization accelerating operations on cached data
- Cache

Pollution from unused particle properties

Particle storage: Benchmark for GPUs

Euler-type for-loop over all particles: $\vec{x} + = dt \vec{v}$

AoS are slower than SoA for large particle numbers

- Memory bandwidth: Pollution from unused particle properties
- Cache benefits at small particle numbers

A fast and flexible library (SoAX)

```
// Define attributes by SOAX macro
SOAX_ATTRIBUTE(id, 'N'); // identity (number)
SOAX_ATTRIBUTE(pos, 'P'); // position
SOAX_ATTRIBUTE(vel, 'V'); // velocity
SOAX ATTRIBUTE(mass, 'M'); // mass
// std::tuple holding attributes
// of specified type and dimension
typedef std::tuple<id<int,1>,
                   pos<double.3>.
                   vel<double.3>.
                   mass<float,1>> Attributes;
// create structure of array for 42 particles
Soax<Attributes> soa(42);
// access attributes:
soa.id(0) = 0; // set identity
soa.pos(i,0) = 100; // set x-coordinate
// array-wise operations using
// expression templates (x = vy - vz)
soa.posArr(0) = soa.velArr(1) - soa.velArr(2);
// extract and treat a particle as an object
auto particle = soax.getElement(7);
particle.id() = 42;
particle.pos(0) = 3.14;
soax.push back(particle);
```

- Optimal Performance (same as c-arrays)
- Handyness of Arrays of Structure (particle = object)

Implementation of SoAx

- Inheritance
- C++11
- Template meta-programming

Simple example: Compute the factorial at compile time

```
template <int N>
struct Factorial
{
    enum { value = N * Factorial<N - 1>::value };
};
template <>
struct Factorial<0>
{
    enum { value = 1 };
};
```

Factorial<11>::value is a compile time constant

Implementation of SoAx

Template meta-programming

Second example: User provided function on arrays

Set all particle data to a given value (here 42):

```
Code to write by user:
```

```
+
```

```
Function object (SetToValue):
```

=

Code generated at compile time

```
p.apply<SetToValue>(42);
```

struct SetToValue

```
{
   template<class T, class Type>
   static void doIt(T& t, Type value) {
     auto tRef = *t;
     for(int i=0;i<t->size();i++)
     t[i] = value;
   }
};
```

Implementation of SoAx

Application of Functor (SetToValue) to all arrays by recursive instantiation:

```
template<class Tuple, std::size_t N, class DoItClass>
struct TupleDo {
  template<class... Args>
  static void doIt(Tuple& t, Args... args)
  ł
    TupleDo<Tuple, N-1, DoItClass >:: doIt(t, args...);
    DoItClass::doIt(std::get < N-1 > (t), args...);
};
template < class Tuple, class DoItClass >
struct TupleDo<Tuple, 1, DoItClass> {
  template<class... Args>
  static void doIt(Tuple& t, Args... args)
  ł
     DoItClass:: doIt(std::get < 0 > (t), args...);
```


Use Structures of Arrays!

Homann & Laenen (2016) in preparation for Comp. Phys. Comm.

Thank you for your attention!

