Eulerian and Lagrangian statistics in fully developed turbulence

Oliver Kamps

Center for Nonlinear Science Westfälische Wilhelms-Universität Münster Münster, Germany

Center for Nonlinear Science

Outline

Introduction

 $\,\triangleright\,\,$ Some basics about the statistical description of turbulence

Relations (something old)

- > The Relation between Eulerian and Lagrangian Observables
- ▷ Case study: Relating increment statistics

Models (something new)

- ▷ Stochastic processes, smoothness and turbulence
- ▷ Case study: Eulerian intermittency

Turbulence – Mathematical description

$$\dot{\boldsymbol{v}} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} = -\nabla p + rac{1}{\mathsf{Re}} \Delta \boldsymbol{v}$$
 $abla \cdot \boldsymbol{v} = 0$

Lagrangian description $\dot{\boldsymbol{X}}(t, \boldsymbol{y}) = \boldsymbol{v}(\boldsymbol{x}, t)$

[van Dyke]

During the talk incompressible turbulence is considered

Turbulence and the others ...

ordered

turbulence

random

Need for a statistical description, but ...

Sample from an experiment

$$v_1(x_1), v_2(x_2), \ldots, v_N(x_N)$$

Joint PDF

$$p(v_1(x_1), v_2(x_2), \ldots, v_N(x_N))$$

- \triangleright Statistical independence p(x,y) = p(x)p(y)
- \triangleright Conditional PDF $p(x|y) = \frac{p(x,y)}{p(y)}$
- $\,\triangleright\,\,$ Marginalization $p(x)=\int dx p(x,y)$
- \triangleright Definition as δ -function $p(x) = \langle \delta(x \tilde{x}) \rangle$
- ▷ PDFs can be estimated from data

In principle one has to deal with

 $p(v_1(x_1), v_2(x_2), \ldots, v_N(x_N))$

Idea to characterize complexity $\rightarrow u(r) = u(x+r,t) - u(x,t)$ In HIT

f(v(r))

Moments of these PDFs are the structure functions

 $u(\boldsymbol{r}, \boldsymbol{x}, t) = \\ [\boldsymbol{v}(\boldsymbol{x} + \boldsymbol{r}, t) - \boldsymbol{v}(\boldsymbol{x}, t)] \cdot \boldsymbol{e}_r$

Lagrangian intermittency

Questions

- What is the relation between increments in Euler and Lagrange?
- ▷ How can we model the increment statistics from the viewpoint of stochastic processes?

What is the relation between statistical quantities in the Eulerian and the Lagrangian frame?

Together with R. Friedrich, H.Homann, R. Grauer

The Puzzle

2D Euler

3D Lagrange

2D Lagrange

Realtions

Known approaches to translate from Euler to Lagrange are not compatible with the puzzle

Rely on $v_r \sim v_l$ and $r \sim v_e$

- ▷ M. S. Borgas *Phil. Trans.*, 342 (1993)
- L. Chevillard,S. G.Roux, E. Leveque, N. Mordant, J.-F. Pinton and A. Arneodo *Phys. Rev. Lett.*, 91, 214502 (2003)
- L. Biferale, G. Boffetta, A. Celani, B. J. Devenish, A. Lanotte and F. Toschi *Phys. Rev. Lett.*, 93, 064502 (2004)

The general view

N grid points/tracers, M time steps, $ilde{x}$ Lagrangian positions (depend on /labeled by their initial positions)

 $\begin{array}{ll} \mbox{Euler} & \mbox{Lagrange} \\ f_E^{N\times M}(\pmb{v}_1^1,\ldots,\pmb{v}_N^M | \pmb{x}_1^1,\ldots,\pmb{x}_N^M,t^1,\ldots,t^M) & f_L^{N\times M}(\pmb{v}_1^1,\ldots,\pmb{v}_N^M,\pmb{x}_1^1,\ldots,\pmb{x}_N^M | t^1,\ldots,t^M) \\ \mbox{field } f_E^{N\times 1} & \mbox{trajectory } f_L^{1\times M} \\ \mbox{increment } f_E^{2\times 1} & \mbox{increment } f_L^{1\times 2} \end{array}$

What kind of information has to be added to go from $f_E^{2\times 1}$ to $f_L^{1\times 2}$?

Remark: for HIT $f_E^{1 \times 1}$ and $f_L^{1 \times 1}$ are equal!

Example: Acceleration PDFs $f_E^{1 \times 1}(a)$ and $f_L^{1 \times 1}(a)$ are equal!

Case study: Relating increment statistics

$$u_e = v(\boldsymbol{y} + \boldsymbol{x}, t) - v(\boldsymbol{y}, t)$$

$$u_e = v(\boldsymbol{y} + \boldsymbol{x}, t) - v(\boldsymbol{y}, t)$$

$$u_{el} = v(\boldsymbol{y} + \tilde{\boldsymbol{x}}(\boldsymbol{y}, \tau, t), t) - v(\boldsymbol{y}, t)$$

$$u_e = v(\boldsymbol{y} + \boldsymbol{x}, t) - v(\boldsymbol{y}, t)$$

$$u_{el} = v(\boldsymbol{y} + \tilde{\boldsymbol{x}}(\boldsymbol{y}, \tau, t), t) - v(\boldsymbol{y}, t)$$

$$u_p = v(\boldsymbol{y}, t) - v(\boldsymbol{y}, t - \tau)$$

$$u_l = v(\boldsymbol{y} + \tilde{\boldsymbol{x}}(\boldsymbol{y}, \tau, t), t) - v(\boldsymbol{y}, t - \tau)$$
$$= u_p + u_{el}$$

Eulerian increment:

$$u_e = v(\boldsymbol{y} + \boldsymbol{x}, t) - v(\boldsymbol{y}, t),$$

Fine grained Probability density function:

$$\hat{f}_e(v_e|\boldsymbol{x}, \boldsymbol{y}, t) = \delta(u_e - v_e).$$

Probability density function:

$$f_e(v_e|\boldsymbol{x}, \boldsymbol{y}, t) = \langle \hat{f}_e(v_e|\boldsymbol{x}, \boldsymbol{y}, t) \rangle,$$

$$f_l(v_l|\tau) = \int dv_e p_b(\underbrace{v_l - v_e}_{v_p} | v_e, \tau) \underbrace{\int_0^\infty dr \ p_a(r|v_e, \tau) \ f_e(v_e|r)}_{f_{el}(v_e|\tau)}$$

- > assumptions: isotropy, stationarity, homogeneity
- ▷ for details see: Phys. Rev. E **79**, 066301 (2009)
- $ho \quad p_a \rightarrow \text{transport of tracers} \Rightarrow \text{mixing of length scales}$
- $ho \quad p_b
 ightarrow$ time correlation of velocity field

Transition pdfs in 2d ($\tau = 0.1T_I$)

- ▷ Particle path depends on velocity difference
- \triangleright Negative correlation between increment v_p and v_e

$$f_l(v_l|\tau) = \int dv_e p_b(\underbrace{v_l - v_e}_{v_p} | v_e, \tau) \underbrace{\int_0^\infty dr \ p_a(r|v_e, \tau) \ f_e(v_e|r)}_{f_{el}(v_e|\tau)}$$

$$f_l(v_l|\tau) = \int dv_e p_b(\underbrace{v_l - v_e}_{v_p} | v_e, \tau) \underbrace{\int_0^\infty dr \ p_a(r|v_e, \tau) \ f_e(v_e|r)}_{f_{el}(v_e|\tau)}$$

$$f_l(v_l|\tau) = \int dv_e p_b(\underbrace{v_l - v_e}_{v_p} | v_e, \tau) \underbrace{\int_0^\infty dr \ p_a(r|v_e, \tau) \ f_e(v_e|r)}_{f_{el}(v_e|\tau)}$$

$$f_l(v_l|\tau) = \int dv_e p_b(\underbrace{v_l - v_e}_{v_p} | v_e, \tau) \underbrace{\int_0^\infty dr \ p_a(r|v_e, \tau) \ f_e(v_e|r)}_{f_{el}(v_e|\tau)}$$

Transition PDFs in 3D NS and MHD ($\tau = 0.1T_I$)

- ▷ Similar structure as in 2D
- ▷ Differences in the details [New J. Phys. 11 073020]

Making contact to other approaches

Approximation $r \sim v_e \tau$ and $v_l \sim v_e$ corresponds to $p_a \sim \delta(r - v_e \tau)$ and $p_b \sim \delta(v_l - v_e)$

$$f_l(v_l;\tau) = \int dv_e \,\delta(v_l - v_e) \int_0^\infty dr \,\delta(r - v_e\tau) f_e(v_e;r) = f_e(v_l;v_l\tau)$$

Stochastic processes, smoothness and turbulence

Time series from experiment or numerical simulation

- arphi Time series sampled at $q(t_N),\ldots,q(t_1)$ with $au=t_i-t_{i-1}$
- \triangleright Full information is encoded in $f(q_N, \ldots, q_1)$

Random process

$$f(q_N,\ldots,q_1) = f(q_N)f(q_{N-1}) \times \cdots \times f(q_2)f(q_1)$$

Markov process:

$$f(q_N,\ldots,q_1) = p(q_N|q_{N-1}) \times \cdots \times p(q_2|q_1)f(q_1)$$

Important: In natural systems Markov property is fulfilled only for $\tau > t_{mar}$ **Practical test:** Measure distance between $p(q_N|q_{N-1}, q_{N-2})$ and $p(q_N|q_{N-1})$ for different τ

Time evolution of f(q,t) is given by Kramers-Moyal expansion

$$\frac{\partial}{\partial t}f(q,t) = \left[\sum_{n=0}^{\infty} \left(-\nabla^n\right) D^{(n)}(q,t)\right] f(q,t)$$

with Kramers-Moyal coefficients

$$D^{(n)}(q,t) = \frac{1}{n!} \lim_{\tau \to 0} \frac{1}{\tau} \langle [q(t+\tau) - q(t)]^n | q(t) \rangle$$

Pawula Theorem: if D^4 vanishes, all D^i with i>2 vanish Corresponds to Gaussian transition PDFs

Fokker-Planck equation

$$\frac{\partial}{\partial t}f(q,t) = \left(-\frac{\partial}{\partial q}D^{(1)}(q) + \frac{\partial^2}{\partial q^2}D^{(2)}(q)\right)f(q,t)$$

Langevin equation

$$\dot{q} = D^{(1)}(q) + \sqrt{D^2(q)}\Gamma$$

 Γ is Gaussian white noise

$$D^{(n)}(x,t) \approx \frac{1}{n!} \frac{1}{\tau_{min}} \langle [q(t+\tau) - q(t)]^n | q(t) \rangle$$

Coefficients can be estimated from experimental data!

Application of Fokker-Planck approach to turbulence

[R. Friedrich and J. Peinke, PRL 78, 863-866 (1997)]

Process in scale with increment $u(r_i) := u_i$ and $r_{i+1} - r_i = \Delta r$

Complete statistical information: $f(u_4, u_3, u_2, u_1)$

N-points: $f(u_N, u_{N-1}, ..., u_2, u_1)$

Markov process for $\Delta r > \lambda$

Estimates of $D^{(1)}(u,r)$ and $D^{(2)}(u,r)$

Reconstruction via Fokker-Planck equation (right: $\Delta r = L/2$)

Stochastic processes and smoothness

For continuously differentiable signals (like turbulence) the derivative of the correlation function is zero at the origin \rightarrow Taylor length scale $C(x)\approx 1-0.5(x^2/\lambda^2)$

Simple stochastic process

$$\dot{q}=-\gamma q+\Gamma$$

Embedded stochastic process

$$\begin{split} \dot{\epsilon} &= -\gamma_{\epsilon}\epsilon + \Gamma \\ \dot{q} &= -\gamma q + \epsilon \end{split}$$

Case study: Eulerian intermittency

The goal of the modeling approach

$$\dot{\boldsymbol{u}} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p + \frac{1}{\mathsf{Re}} \Delta \boldsymbol{u} \longrightarrow u(x_1), u(x_2), \dots u(x_n)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\partial_x u_m(x) = \mathsf{model} \longrightarrow u_m(x_1), u_m(x_2), \dots u_m(x_n)$$

 $u(x_i)$ and $u_m(x_i)$ should share similar statistical features / η is base length

A look into the data - Data set provided by J. Peinke

▷ Free jet experiment

 \triangleright Re = $2.7 \cdot 10^4$

- \triangleright η =0.3mm
- \triangleright λ =6.6mm
- \triangleright L=67mm

A look into the data - Data set provided by J. Peinke

- ▷ Free jet experiment
- \triangleright Re = $2.7 \cdot 10^4$
- \triangleright η =0.3mm
- \triangleright λ =6.6mm
- ⊳ *L*=67mm

The general model structure

$$\partial_x d(x) = D^{(1)}[d(x)] + \sqrt{D^{(2)}[d(x)]}\gamma$$
$$\partial_x u(x) = -\frac{1}{L}u(x) + d(x)$$

 $\boldsymbol{\gamma}$ is Gaussian white noise

Modeling

Parametrization of ${\cal D}^{(1)}$ and ${\cal D}^{(2)}$

$$D^{(1)}[u(x)] = a_1^1 d(x) + a_2^1 d(x)^2 + a_3^1 d(x)^3$$
$$D^{(2)}[u(x)] = a_1^2 + a_2^2 d(x)^2$$

- $arphi \ a_1^1$, a_3^1 needed for stability
- $arphi \ a_2^1$ asymmetry (energy flux)
- $arphi \ a_1^2$ Gaussian tip
- $\triangleright \quad a_2^2 \text{ non Gaussian tails}$

Modeling

Parameters from minimizing distance between increments PDFs

- Lagrangian frame
- ▷ Further tests

Work in progess ¹

¹O. Kamps, A Stochastic Model for intermittency in fully developed turbulence, in preparation

Conclusion

- If you want to translate Observables from the Eulerian to the Lagrangian frame you have to provide information encoded in transition probabilities
- If you want to make dynamical stochastic models for multipoint statistics you have to care for the smoothness of the underlying process