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Introduction

> Some basics about the statistical description of turbulence

Relations (something old)
> The Relation between Eulerian and Lagrangian Observables

> Case study: Relating increment statistics

Models (something new)
> Stochastic processes, smoothness and turbulence

> Case study: Eulerian intermittency
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Turbulence — Mathematical description

1

A
Rev

v+v-Vvo=-Vp+
V-v=0

Lagrangian description X (t,y) = v(x, )

[van Dyke]

During the talk incompressible turbulence is considered
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Turbulence and the others ...

ordered turbulence random

Need for a statistical description, but ...
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Sample from an experiment

vi(z1), v2(x2), ..., oNn(ZN)

Joint PDF

v vV Vv vV V

p(v1(z1),va(z2),. .., on(TN))

Statistical independence p(x,y) = p(x)p(y)

Conditional PDF p(z]y) = %

Marginalization p(z) = [ dzp(z,y)

Definition as d-function p(x) = (6(x — Z))
PDFs can be estimated from data
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In principle one has to deal with

p(v1(z1),va(z2),. .., on(TN))

Idea to characterize complexity — u(r) = u(z + r,t) — u(x, t)
In HIT
f(o(r))

Moments of these PDFs are the structure functions
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Eulerian intermittency Lagrangian intermittency
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u(r,z,t) = u(r,t) =v(t+7,t) —v(t)

[v(x+7r,t)—v(x,t)- e
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Questions

> What is the relation between increments in Euler and
Lagrange?

> How can we model the increment statistics from the
viewpoint of stochastic processes?
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What is the relation between statistical quantities in the Eulerian
and the Lagrangian frame?

Together with R. Friedrich, H.Homann, R. Grauer



Relations
The Puzzle

3D Euler 3D Lagrange
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Realtions

Known approaches to translate from Euler to Lagrange are not
compatible with the puzzle

Rely on v, ~ v; and r ~ v,

> M. S. Borgas Phil. Trans., 342 (1993)

> L. Chevillard,S. G.Roux, E. Leveque, N. Mordant, J.-F. Pinton
and A. Arneodo Phys. Rev. Lett., 91, 214502 (2003)

> L. Biferale, G. Boffetta, A. Celani, B. J. Devenish, A. Lanotte
and F. Toschi Phys. Rev. Lett., 93, 064502 (2004)
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The general view

N grid points/tracers, M time steps, & Lagrangian positions (depend on /labeled by their initial positions)

Euler Lagrange
N XM 1 M, 1 M 1 N X M 1 M 1 M, 1 M
fe (v, .oy l®, o Nt )f (v, s ON T, [, )
field fN><1 trajectory leM
increment f?;d increment f1X2

What kind of information has to be added to go from f2*! to f;*2 ?
Remark: for HIT f3*! and f;*' are equal!

Example: Acceleration PDFs f£*!(a) and f7*'(a) are equal!
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Case study: Relating increment statistics
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Ue = ’U(y + ZB,t) - U(y7t)
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Ue = U(y + :B,t) - U(y7t)

Ue] = U(y + j(y7 7, t)7 t) - U(yv t)

L



Relations

T Ue :v(y—I—ac,t) _U<y7t>
T Uel = v(y + i:(y7 T, t)vt) - ’U(’y,t)

L

up = v(y,t) —v(y,t —7)



Relations

L)

Ue = U(y + CC,t) - U(yat)

Uel = U(y + fé(ya T, t)7 t) - U(yv t)

Up = U(ya t) - U(:’/?t - T)

u; = U(y + ii(yﬂ'» t)vt) - U(y,t - T)

= Up + Uel
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Eulerian increment:
ue = v(y +x,t) —v(y, 1),
Fine grained Probability density function:
fe(velm, y, t) = 6(ue — ve).
Probability density function:

fe(velz,y,t) = (fe(vel 2. y, 1)),



Relations

fiulr) = / dvepy (vt — ve |0, ) /0 i pa(rloe ™) fu(velr)

Up

for(velT)

> assumptions: isotropy, stationarity, homogeneity
> for details see: Phys. Rev. E 79, 066301 (2009)

> pg — transport of tracers = mixing of length scales

> pp — time correlation of velocity field



Relations

Transition pdfs in 2d (7 = 0.177)

> Particle path depends on velocity difference

> Negative correlation between increment v, and v,
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Transformation of pdfs (2D)

Ji(oilr) = / dvepy (v1 — ve [ve, 7) /0 " dr pa(rlve, ) fe(velr)

Yp

fet(velT)



Relations

Transformation of pdfs (2D)

Ji(oilr) = / dvepy (v1 — ve [ve, 7) /0 " dr pa(rlve, ) fe(velr)

Yp

fet(ve|T)
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Relations

Transformation of pdfs (2D)

Ji(oilr) = / dvepy (v1 — ve [ve, 7) /0 " dr pa(rlve, ) fe(velr)

Yp

fet(ve|T)
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Relations

Transformation of pdfs (2D)

Ji(oilr) = / dvepy (v1 — ve [ve, 7) /0 " dr pa(rlve, ) fe(velr)

Yp
fer(velT)
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Transition PDFs in 3D NS and MHD (7 = 0.177)

> Similar structure as in 2D
> Differences in the details [ New J. Phys. 11 073020 ]
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Making contact to other approaches

Approximation r ~ v.7 and v; ~ v, corresponds to
Pa ~ 6(T - UeT) and pp ~ 6(Ul - Ue)

flos / v, (v — ve) /0 T dr 5 — ver) fulves ) = fulurs uir)



Models



Models

Stochastic processes, smoothness and turbulence
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Time series from experiment or numerical simulation
> Time series sampled at q(tn),...,q(t1) with 7 =t; — t;1
> Full information is encoded in f(gqn,...,q1)

Random process
flan,- o sq) = flan) flan—1) x -+ x fg2)f(qr)
Markov process:
flan, ... a1) = planlan—1) x -+ X p(gz|q1) f(ar)

Important: In natural systems Markov property is fulfilled only for 7 > t.qr
Practical test: Measure distance between p(gn|gn—1,gnv—2) and p(gn|gn—1)

for different 7
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Time evolution of f(q,t) is given by Kramers-Moyal expansion

% (q,1) = [Z(—V”)D(”)(q,t)] flg;1)

n=0

with Kramers-Moyal coefficients

Pawula Theorem: if D* vanishes, all D* with i > 2 vanish
Corresponds to Gaussian transition PDFs
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Fokker-Planck equation

2
gt (¢,t) = <—§QD(”((J) - ;qu(Q)(q)> f(a.t)

Langevin equation
i =DW(q) +/D?(q)T
I" is Gaussian white noise

DO (1) ~ -

n: Tmin

([g(t +7) = q(t)]"[a(t))

Coefficients can be estimated from experimental data!
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Application of Fokker-Planck approach to turbulence
[R. Friedrich and J. Peinke, PRL 78, 863-866 (1997)]

Process in scale with increment u(r;) := u; and rjy —r; = Ar
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Complete statistical information: f(ug4, us, ug,u1)

N-points: f(uN, UN—1y---,U2, ul)

Markov process for Ar > A
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Estimates of D) (u,r) and D@ (u,r)

DM (ur) /o,

D@ (u,r) / 0,2

20




Models
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Models

Stochastic processes and smoothness

For continuously differentiable signals (like turbulence) the
derivative of the correlation function is zero at the origin — Taylor
length scale C(z) ~ 1 — 0.5(x?/)\?)

Simple stochastic process

¢=-vq+T

Embedded stochastic process

€= —ve+1T \

q=-"q+e



Models

Case study: Eulerian intermittency



Models

The goal of the modeling approach

u+u-Vu=-Vp+ %Au — u(zr), u(zs), ... u(zy)

\ 1

Ozt () = model — U (x1), U (z2), .+ U (2)

u(x;) and uy, (x;) should share similar statistical features / 7 is
base length



Models

A look into the data — Data set provided by J. Peinke

v vV VvV VvV V

Free jet experiment

Re = 2.7-10%
n =0.3mm
A=6.6mm
L=67mm
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Models

A look into the data — Data set provided by J. Peinke

Free jet experiment

Re = 2.7 10%
n =0.3mm
A=6.6mm
L=67mm z

v V. vV V V
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The general model structure

0pd(z) = DW[d(z)] + / DPd(x)]y ;

Oru(z) = —%u(ﬂ:) +d(x) ;

~ is Gaussian white noise




Modeling

Parametrization of D(1) and D)

DW[u(z)] = ald(z) + add(z)? + add(x)?
DPu(x)] = af + a3d(z)?

pv)

al, a3 needed for stability

>
> ad asymmetry (energy flux)
>
>

2 . .
aj Gaussian tip

a3 non Gaussian tails



Modeling

Parameters from minimizing distance between increments PDFs
> Lagrangian

frame 10

> Further tests 10

Work in progess !

10. Kamps, A Stochastic Model for intermittency in fully developed
turbulence, in preparation



Conclusion

>

If you want to translate Observables from the Eulerian to the
Lagrangian frame you have to provide information encoded in
transition probabilities

If you want to make dynamical stochastic models for
multipoint statistics you have to care for the smoothness of
the underlying process



