

Turbulence a Challenging Problem for Wind Energy

Joachim Peinke

group TWiSt (Turbulence, Wind Energy and Stochastic)

ForWind - Center of Wind Energy Research of Universities Oldenburg, Hannover and Bremen

&

Fraunhofer Institut IWES

content

v basics features of turbulence

We How does a wind turbine work?

v operating conditions for a wind turbine

▼ research challenges

EXISTENCE AND SMOOTHNESS OF THE NAVIER-STOKES EQUATION

CHARLES L. FEFFERMAN

The Navier-Stokes equations are then given by

(1)
$$\frac{\partial}{\partial t}u_i + \sum_{j=1}^n u_j \frac{\partial u_i}{\partial x_j} = \nu \Delta u_i - \frac{\partial p}{\partial x_i} + f_i(x,t) \qquad (x \in \mathbb{R}^n, t \ge 0)$$

(2)
$$\operatorname{div} u = \sum_{i=1}^{n} \frac{\partial u_i}{\partial x_i} = 0 \qquad (x \in \mathbb{R}^n, t \ge 0)$$

(11)
$$p, u \in C^{\infty}(\mathbb{R}^n \times [0, \infty)).$$

A fundamental problem in analysis is to decide whether such smooth, physically reasonable solutions exist for the Navier–Stokes equations. To give reasonable leeway to solvers while retaining the heart of the problem, we ask for a proof of one of the following four statements.

A fundamental problem in analysis is to decide whether such smooth, physically reasonable solutions exist for the Navier–Stokes equations. To give reasonable leeway to solvers while retaining the heart of the problem, we ask for a proof of one of the following four statements.

$$\frac{\partial}{\partial x}u(x) = \lim_{r \to 0} \frac{u(x+r) - u(x)}{r}$$

$$= \lim_{r \to 0} \frac{u_r}{r}$$
have to understand

$$\lim_{r \to 0} u_r$$

have to understand

$$\lim_{r \to 0} u_r$$
$$u_r = u(x+r) - u(x)$$

homogeneous isotropic turbulence -- hiT

- \mathbf{V} r depend of velocity increments: $u_r = u(x+r) u(x)$
- cascade and statistics of increments

homogeneous isotropic turbulence -- hiT

- $\forall r$ depend of velocity increments: $u_r = u(x+r) u(x)$
- cascade and statistics of increments

summary turbulence

$$u_r = u(x+r) - u(x)$$

- \blacktriangleright non Gaussian statistics for small scales r
- Intermittency violent fluctuations on small scales

content

basic problems

problems of mathematics

application problems of society: energy environment CO2 resources

finances

_

versität Oldenburg

content

v basics features of turbulence

We How does a turbine work?

v operating conditions for a wind turbine

v research challenges

power from wind

$$E_{wind} = \frac{1}{2}mu^2$$

$$P_{wind} = \dot{E}_{wind} \qquad \dot{m} = \rho \dot{V}$$
$$= \frac{1}{2} \dot{m} u^2 \qquad = \rho \dot{A} \cdot u$$

$$P_{wind} = \frac{1}{2}\rho A u^3$$

for u = 12 m/s

$$P_{wind} = 1kW/m^2$$

power from wind

$$E_{wind} = \frac{1}{2}mu^2$$

$$P_{wind} = \dot{E}_{wind} \qquad \dot{m} = \rho \dot{V}$$
$$= \frac{1}{2} \dot{m} u^2 \qquad = \rho \dot{A} \cdot u$$

 $P_{wind} = \frac{1}{2}\rho A u^3$ for u = 12 m/s $P_{wind} = 1kW/m^2$

WEC P_{WEC}

$$c_P = c_P rac{1}{2}
ho A u^3$$
 $c_P \leq 0.59$ Betz- Joukowsky limit

size

area = 12469 m² $P_{wind} \leq 12MW$

$$P_{WEC} = c_p \cdot P_{wind}$$

 $c_P \leq 0.59$

$$P_{WEC} \approx 5 - 6MW$$

WEC >5MW

CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG

power output of wind turbines

measured power curve

power output of wind turbines

story of success

GLOBAL ANNUAL INSTALLED WIND CAPACITY

FIGURE 1.2: SHARE OF NEW POWER CAPACITY INSTALLATIONS IN EU, TOTAL 35,181 MW

TOP 10 NEW INSTALLED CAPACITY JAN-DEC 2014

ForWind Energy Research

CARL VON OSSIETZKY IVERSITÄT OLDENBURG

wind turbines in Germany

1 Windenergieanlage

Hinweis: Bislang liegen flächendeckend nur Angaben zur Anlagenzahl je Gemeinde vor. Diese aggregierten Werte wurden mit der Punktdichte-Methode nach dem Zufallsprinzip über das Gemeindegebiet verteilt. Der in der Karte verzeichnete Punkt stellt daher nicht den exakten Anlagenstandort dar.

employees

- number of employees even increased during the last year's economic crisis
- **7** 2014 around 130.000 new jobs

Beschäftigung durch erneuerbare Energien in Deutschland

Les Houches 2016

CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG

offshore activities

Wind farms under construction [edit]

Wind farm +	Cap. (MW) \$	Turbines \$	Where +	When 🔺	Build Cost	Cap. fac. ∳	Depth range ÷ (m)	km to shore ≑	Country +	Owner ÷	Refs. +
DanTysk	288	80 × Siemens SWP-3.6-120	Q 55°8′24″N 7°12′0″E	2015	\$900 million		21-31	70	Germany	Vattenfall Stadtwerke München	[w 24] [43][44]
Amrumbank West	288	80 × Siemens SWT-3.6-120	54°26'00"N 7°41'0"E	2015				40	Germany		
Borkum Riffgrund I	312	78 × Siemens SWT-4.0-120	53°58′01″N 6°33′14″E	2015	€1.25 billion		23-29	55	Germany	DONG, Kirkbi, Oticon	[w 25]
Butendiek	288	80 × Siemens SWT-3.6	55°01′08″N 7°46′26″E	2015				35	Germany		[w 26]
Eneco Luchterduinen	129	43 × Vestas V112/3000	52°24'18"N 4°09'43"E	2015	€450 million		18-24	24	Netherlands	Eneco, Mitsubishi	[w 27]
Global Tech I	400	80 × Multibrid M5000	54°15′43″N 6°24′38″E	2015				110	Germany		[w 28]
Humber Gateway	219	73 × Vestas V112-3.0	53°38'38"N 0°17'35"E	2015	€900 million		10-18	10	STE United Kingdom	E.ON	[w 29]
Nordsee Ost	295	48 × Senvion 6.2M126	54°26'00"N 7°41'0"E	2015				55	Germany	RWE Innogy	[w 30]
Trianel Windpark Borkum (phase 1)	200	40 × Areva M5000-116	54°2'30"N 6°28'0"E	2015	€900 million		28-33	45	Germany	Trianel	[w 31]
Westermost Rough	210	35 × Siemens SWT-6.0	53°48'18"N 0°08'56"E	2015	€1 billion		10-25	8	State United Kingdom	DONG	[w 32]
Gemini	600	160 × Siemens SWT-4 0	54°2'10"N 5°57'47"E	2017	€2.8 billion			55	Netherlands	Northland Power, Siemens, Van	[w 33]
Center for Wind Energy Res	earch			Les Houc	thes 201	6				universität OL	DENBURG

story of success

there are some activities in the North Sea

CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG

are there any problems? - Failure statistics

water power plant: Saalach (DB)

content

v basics features of turbulence

We How does a turbine work?

v operating conditions for a wind turbine

- wind conditions
- **▼** research challenges

- **w**ind conditions after IEC
 - measurement at hub height in front of a turbine

▼ characterization after IEC norm

- 10 min mean value
- turbulence intensity

▼ characterization after IEC norm

statistics of gusts

IEC **◄**—-► statistical analysis

Les Houches 2016

ForWind Energy Research

same mean and stand deviation

Table 1: Turbulence Characterization Scheme

Type of Statistics	Order	Feature	Random Data	Spectral Models	Wind Turbulence	Characterization
1-point	1	Mean speed	•	•	•	$\bar{u} = \langle u(t) \rangle_T$
	2	Turbulence	•	•	•	$I = \sigma_{u'}/\bar{u}$
		Intensity				
	n	Extreme	-	-	•	p(u')
		Fluctuations				
2-point	2	Distribution of	-	•	•	$S(f) = \mathcal{F} \{ R_{uu}(\tau) \}$
		σ_u over f				
	n	Intermittency	-	-	•	$\lambda(\tau)$
		of $p(\delta u(\tau))$				
<i>n</i> -point	n	Arbitrary-order	-	-	•	To be investigated
		<i>n</i> -point				
		correlations				

IEC Wind and measured

EUROMECH 528, S. Basu Uni Texas,

Wind turbine

 $\boldsymbol{\nabla}$ wind turbine in turbulent flows

is a small scale object

does this intermittency matter?

content

v basics features of turbulence

We How does a turbine work?

v operating conditions for a wind turbine

- wind conditions => power dynamics
- **v** research challenges

dynamics of power conversion

$$P_{WT} = \frac{1}{2} c_p(\lambda) \ \rho \ u_{wind}^3 \cdot A$$

increment statistics of power fluctuations

highly intermittent and turbulent power dynamics from wind turbines and wind farms

Statistik der Leistungsschwankungen der Windenergie in Irland O. Kamps U Münster

grid integration

▼ changed grid integration - not controllable power plant but local renewable source

CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG

main message

wind turbine is a big turbulence engine

content

v basics features of turbulence

We How does a turbine work?

v operating conditions for a wind turbine

- wind conditions = ► power dynamics
- **v** research challenges

research challenges

- **w** environmental conditions wind and waves
 - high resolving sensors
 - multi-point characterization
- ▼ impact on WEC
 - lift force, thrust dynamics (dynamics of the conversion process)
 - stochastic characterization of a noisy (turbulent) driven system
 - turbulent wind tunnel
- $\boldsymbol{\nabla}$ grid integration
 - wind farm interacting dynamical systems
 - collective behavior

research challenges

- **v** environmental conditions wind and waves
 - high resolving sensors
 - multi-point characterization
- **▼** impact on WEC
 - lift force, thrust dynamics (dynamics of the conversion process)
 - stochastic characterization of a noisy (turbulent) driven system
 - turbulent wind tunnel
- **W** grid integration
 - wind farm interacting dynamical systems
 - collective behavior

2D-Laser Cantilever Anemometer (2D-LCA)

■ DEFLECTION MODES OF THE CANTILEVER ▼ Motivation

bending and twisting

Les Houches 2016

CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG

LiDAR - Light Detection and Ranging

research challenges

- **w** environmental conditions wind and waves
 - high resolving sensors
 - multi-point characterization
- ▼ impact on WEC
 - lift force, thrust dynamics (dynamics of the conversion process)
 - stochastic characterization of a noisy (turbulent) driven system
 - turbulent wind tunnel
- $\boldsymbol{\nabla}$ grid integration
 - wind farm interacting dynamical systems
 - collective behavior

- Wind is the energy resource we should know is well
 - more than increments two point quantity

increments - 2 point statistics

$$u_r = u(x+r) - u(x)$$

using velocity increments - 2 point quantity

Heidelberg 2015

Table 1: Turbulence Characterization Scheme

Type of Statistics	Order	Feature	Random Data	Spectral Models	Wind Turbulence	Characterization
1-point	1	Mean speed	•	•	•	$\bar{u} = \langle u(t) \rangle_T$
	2	Turbulence	•	•	•	$I = \sigma_{u'}/\bar{u}$
		Intensity				
	n	Extreme	-	-	•	p(u')
		Fluctuations				
2-point	2	Distribution of	-	•	•	$S(f) = \mathcal{F} \{ R_{uu}(\tau) \}$
		σ_u over f				
	n	Intermittency	-	-	•	$\lambda(\tau)$
		of $p(\delta u(\tau))$				
<i>n</i> -point	n	Arbitrary-order	-	-	•	To be investigated
		<i>n</i> -point				
		correlations				

turbulence: n - point statistics

$$p(u(x_1), \dots, u(x_{n+1}))$$

using velocity increments:
$$u_{r_i} = u(x + r_i) - u(x_i)$$

$$p(u(x_1), \dots, u(x_{n+1})) = p(u_{r_1}, \dots, u_{r_n}, u(x_1))$$

n+1 -point statistics can be expressed be joint n-increment statistics

Heidelberg 2015

n-point statistics

synthetic wind fields

w next step - wind fields modeling

next step - wind fields modeling - CTRW model of Kleinhans / Friedrich
 first results with CFD - numeric simulations

reproduction of wind fields with active grid

research challenges

- wind and its turbulence
 - high resolving sensors
 - multi-point characterization
- ▼ impact on WEC
 - lift force, thrust dynamics (dynamics of the conversion process)
 - stochastic characterization of a noisy (turbulent) driven system
 - turbulent wind tunnel
- **W** grid integration
 - wind farm interacting dynamical systems
 - grid stability under turbulent noise
 - collective behavior

angle of attack

▼ increment statistics of angle of attack (1 Year - Gerrit Kampers Fino 1)

corresponding wind speed increments

Stoevesandt EWEC PO.223 (2009)

Active Grid and Dynamic Stall

- 16 axes with square plates
- Independent movements with stepping motors
- Controlled by "excitation protocols"
- Reproducible wind fields with adjustable intermittency statistic
- Generation of atmospheric turbulence possible

Wind tunnel and measuring techniques

- Outlet 100 x 80 cm
- Up to 50 m/s, TI ≈ 0.3 %
- Closed test section (260 cm) with optical access
- Airfoil chord 30cm

experimental setup

dynamic stall for different inflow

Homeyer EFMC 20 TU 17:00

CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG

research challenges

- wind and its turbulence
 - high resolving sensors
 - multi-point characterization
- ▼ impact on WEC
 - lift force, thrust dynamics (dynamics of the conversion process)
 - stochastic characterization of a noisy (turbulent) driven system
 - turbulent wind tunnel
- **W** grid integration
 - power output dynamics
 - wind farm interacting dynamical systems
 - collective behavior

CARL VON OSSIETZKY **UNIVERSITÄT** OLDENBURG

Windphysics in Oldenburg

aim to combine free field measurements wind tunnel CFD- simulations

main focus on turbulent

wind fields

Forschungsbau "Windlab"

turbulence is challenging for wind energy

Niedersächsisches Ministerium für Wissenschaft und Kultur

