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Preamble

 What is at stake in turbulence: many problems of crucial
importance in the natural sciences (geo-, astro-physics, etc) or
In engineering.

* From the point of view of fundamental physics: turbulence is a
challenging non-equilibrium statistical mechanics problem.

~ one needs to find the right concepts/methods to cope with a
highly non-equilibrium, nonlinear system.

* Here: explore the problem from the point of view of the
motion of individual particles (the “lagrangian approach”).



The Lagrangian point of view

Accurate measurements of particles moving (very fast)
in a turbulent flow (Cornell/Gottingen; Lyon; Ziirich;
Copenhagen ...). DNS results of similar quality.

What can we learn about turbulence by following
particles?



Turbulent motion from a particle
perspective

 (Classical results:

- At long times, Gl Taylor (1922) showed that the motion
is diffusive, with a coefficient of diffusion:

D= [ (u(x(t),1)u(x(0),0))dr

- Dispersion of a set of particles by a turbulent flow
(Richardson, 1928):

<R2(t)> x g 1



Turbulent motion from a particle
perspective

New perspective:

With the newly available possibilities in experiments or
numerical simulations, describe the motion of particles at
small spatial and temporal scales.

e How does turbulence affect the motion of one particle ?
e ..ofseveral particles ?
* Any connection with “stochastic thermodynamics” ?



Time irreversibility

Turbulent dynamics (Navier-Stokes eqgns)
~ energy flux through scale
~ time irreversible process.

”A trained eye viewing a movie of turbulence run
backwards can tell that something is going wrong...”

(Falkovich & Sreenivasan, Physics Today 2006)

Can one really distinguish “the arrow of time” ?
(see e.qg. Pomeau, 1982).



“training the eye”:

Two-particle statistics



Training the eyes by following pairs
of particles

Deduce the equation for the evolution of the relative
evolution of two particle relative distance:

R(1) = 1,(1) - 1;(1); OR(1) = R(t)~ R(0)
Introduce: Ou =1u,(t)—u,(t); oa=a,(t)-a,(t)
=> <5R(t)2> - <5u(0)2>t2 4 <5u(0). 5a(0)>t3 +O(t")

Identity: (Ott and Mann 2000, Pumir et al 2001, Falkovich et al 2001)

%%@2 ~1)*) = (8u(0). da(0)) =2



Training the eyes by following pairs
of particles

Consequence:
(OR(=1)* )= (8R(1)* ) = =2(6u(0). da(0))r’ +O(1’)

5.0 r—r—r—rrrrm

Use different initial
separations, R, different

Reynolds numbers + rescale
time with t,=(R*/&)"”

Good data collapse !

(6R*(—t) — 6R?(t)) /[—3(u(0) - a(0))’]

— R) =300, DNS

T = 10 —=» (Jucha et al, PRL 2014)
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Training the eyes by following pairs
of particles

Physical content: particles separate faster backward in
time than they separate forward in time !

=> Measuring how particles separate does provide a way
of distinguishing forward- and backward- evolution by
looking at pairs of particles.



Using more particles to
“train the eye”



More particles => more info !

w(t=0.25t0)

Analysis: relate the observed time-asymmetry to fundamental
properties of the velocity gradient tensor.




Velocity gradient
perceived by tetrads:

M=S+Q
Perceived strain: S = %(M + MT)
1

Perceived vorticity: () = 5 (1\/[ — MT)

Chertkov, Pumir, Shraiman (Phys. Fluids, 1999)



Quantifying the shape evolution

Eigenvalues g, of the moment of

Ry

inertia tensor (r°= center of mass):

gi= Y ' =rO 1)

a=vertices

Define: I, = Ji
g1+ g2 + g3

1
I =1,=13= =1, I, = I3=~0 I, > 1, >1I3~0

3
& = <

Pumir, Shraiman, Chertkov (Phys. Rev. Lett., 2000)




Shape deformation

Evolution for the shape of the set of particles (disregard the motion of
the center of mass):
doldt =M . p

Take as an initial condition a regular tetrahedron of size R,
Expand S in Taylor series: S =S,+1tS,+#/28,+ ...

Work in the eigen-basis of S,: eigenvalues of S,

Obtain the following expression for <g()>:

<g(t)>=12R7[1+2<S,>t
+ <28,/ + S8, >t +0(F)]



Shape deformation
and time asymmetry t -> -t

The distribution of the eigenvalues of the S, the strain tensor based on
tetrads, is skewed; such that
<§y,> >0

A fundamental property of turbulence (Betchov 1956, Siggia 1981,
Ashurst et al, 1987)..

3+
5 e —O (o) Q o o q 2.18
1k
=
- M PR T o o o o 0.19
-1k
2k
-3k
| | | | | |
50 100 150 200 250 300 350 400
Jucha et al, 2014

Ro/n



Shape deformation
and time asymmetry t -> -t

Consequence:
The intermediate eigenvalue <g,(t)> is sensitive to the ¢ -> -¢
asymmetry, at first orderint!
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Shape deformation
and time asymmetry t -> -t

Physical meaning:

An extended, initially isotropic object, flattens differently depending on
the arrow of time

~ consequence of the statistical asymmetry of the rate of strain
tensor, which is itself a consequence of the small-scale generation in
turbulence.



Can one “train the eye” by
following one particle only ?



Lagrangian velocity increments

u(t+ 7)

oru=u(t+7)—u(t)

u(?)

Lagrangian structure functions: D, (1) = <(0, u)">.
If one flips the direction of time: + — —¢ ,
Dz(r)=<(5,u)2> is unchanged (Falkovich et al, 2012) !

See Leveque and Naso, EPL 2014, for a more precise analysis.



Can one detect irreversibility from one
single particle trajectory ?

Observation: large velocity jumps of one given trajectory are
associated with a stronger particle deceleration than acceleration.
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Detecting time irreversibility from single-
particle trajectory

Consider the kinetic energy increments:

W(r) = E(t+71) — E(t)
and their moments: <Wn (7')>

The odd moments are not invariant under t — —1

They can pick up the lack of symmetry seen
experimentally |

n.b.: the moments <Wn (7‘)> cannot be expressed in

terms of velocity increments only



Detecting time irreversibility from single-particle trajectory
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Note that plateau range is much more significant
than that of the velocity structure functions.

The third moment of
W(t) is negative, and
remains ~ constant
when t/t is larger
than ~2.
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Asymmetry of the PDF of W and breaking
of detailed balance

The observed lack of symmetry W — —-W
from the PDFs implies that:

P(E —- FE+ AF) # P(E+ AF — FE)

Detailed balance is broken !!



... N0 obvious connection with the existing
results on statistical thermodynamics...
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A quantitative measure of
irreversibility



How to measure irreversibility in a
turbulent flow ?

* When the Reynolds number increases, the
range of excited scale becomes larger.

Can one quantify the irreversibility, and get a
notion as how it depends on the Reynolds
number ?

First problem: find a proper measure of
irreversibility |



A quantity measuring Irreversibility (/r)

A naive suggestion:

Origin of irreversibility: the energy flux e.
[r=¢77?

Problem: gis dimensional —ie, it can be made arbitrarily
large or small by changing the units.



At short times:
(W3 (7)) = (

= ((a-v)*)7° + h.o.t.

dF

3
E) ’7'3 —|— hOt

The observation of nonzero odd moments of W suggests
that time-irreversibility should also be reflected in the
statistics of the instantaneous power on a fluid particle

p=a-v

In particular, it implies that the PDF of power p is
negatively skewed.



A quantity measuring Irreversibility (/r)

A better suggestion:

Use the simplest non-obvious moment of p, <p3>, made
properly dimensionless.

~notice that p and ¢ have the same dimension.

Ir =- <p3>/¢€°



~(p’yre
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Small scale generation in 3d
turbulence
and
irreversibility



What is the content of <p>> ?

<p3>oc -7 R’

Main result: in 3D flows:
<p’><0 & <w.S.0>>0

In other words: the manifestation of irreversibility
observed from the motion of individual particles is a
consequence of small-scale generation by
turbulence.

Irreversibility “equals” small scale generation




Decomposition of acceleration

 Usetheidentify: a=du/dt=0u+u.V) u
=>
p=au=udu/ot+u(u.Vu)
=P T Pc
where p, =u. du/dt and pc=u. (u.V)u
(see also Tsinober et al, 2001 ).

n.b.: p- can be expressed as p, = u.S.u, where §
1s the (symmetric) rate of strain tensor.



An identity

* Assume that the statistical properties of
u and S are statistically independent

(reasonable, since u is controlled by the largest scales of the flow,
whereas S is controlled by the smallest scale quantity, which are

expected to be only weakly coupled).

Then:  (pi)={G S )= —(u")(ir(s")

* Use the relation for homogeneous flows (Betchov 1956):

<tr(S3)> = —%(w.Sw)

Consequence:

<a).S.a)> >0 = <pé> <0



Elementary scaling considerations
* The usual scaling arguments impy that:
(P &'R; ;5 (p} )< &'R]

(pe)y &R} 5 (p;)x &R,

* How come does one find

<p2>OC82Ri/3; <p3>0683R§

... and what does it imply for the moments of p-, p; ???



Partial cancellation between p, and p .

* Observation: to a large extent, p. and p,

cancel each other!
lpc+p, | <<Ip.LIp,|
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Partial cancellation between p, and p .

* Weak correlations between p, and p; almost
no correlation between p, and p.
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Implication for the moments of p

* Taking into account the independence of p, and p, obtain:
<p’lpc>=(1-B) pc”

so  <p?>=(1-B) <pF>

* For the third moment:
(...) <p’>=(1-B’)<p;>

where (1-")is a number smaller than (1-), but positive.

Consequence: (I-8) ~R;?? and (I-B’) ~ R,




Independence of u and S
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on the magnitude of velocity.



Implication of <p°> < 0 for frozen
flows

* |nfact, the 3" moment of ¢ Corresponding to

W(t)=1/2 [u?(T)- u?(0)] are negatively skewed
distributions of W(7).

negative.
RK = 170; frozen flow
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Action of the different forces
acting on tracer particles



A breakdown of the contributions to p
p=a-v=—-—v-VP+v-f+v-D
In 3D: D = 1vV3v
In 2D: D =vViv — av

For stationary homogeneous turbulence:
(v -VP)=0
(v-f) =—(v-D)=¢€



A breakdown of the contributions to p
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The magnitude of the pressure gradient term also grows faster than
the dissipation term.



A breakdown of the contributions to p
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The magnitude of the pressure gradient term overwhelms the others.



Main contributions to the third moment of the
power

In 2D, — (v - V P) contributes to 2/3 of the third moment of p.
=>» Pressure contributes to the large, negative accelerations.

(p°) = ((—u- VP)?) + (3(—u - VP)*(—au?))

In 3D, the third moment of the pressure gradient term does not
contribute; the third moment of p comes from cross-terms.

(p®) ~ 3{(vu- V?u)(—u-VP)?) +3((u-f)(—u- VP)?

Pressure forces: in 3D, if anything, they contribute more to large
energy increases than energy losses...



Pressure gradient term is
differently skewed in 2D and 3D!
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In 2D, —(v - V P) contributes to 2/3 of the (negative) skewness of p.
In 3D, pressure gradient term is slightly positively skewed!



Where does the skewness of p come from?
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Peculiar behavior of pressure gradient

Pressure gradient term conditioned on the kinetic energy of the fluid particle:

Note that
(—v-VP)=0
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In 3D, pressure gradient tends to take kinetic energy away from slow
particles and give it to fast particles!

A runaway mechanism related to the singularity problem of the NSE?



Summary

Can one detect time-irreversibility from the motion of
particles ?

 With 2 particles or more: YES [Jucha et al, PRL, 2014;
related to known-properties of turbulent flows]

 With only 1 particle ? YES [Xu et al, PNAS, 2014]!

 The irreversibility in the motion of single particles IS
related to small-scale production [Pumir et al, PRL 2016].

* The normalized third moment of the instantaneous
power on a fluid particle provides a good measure of
how far the system is away from equilibrium.

Xu et al, PNAS, 2014 ; Jucha et al, PRL, 2014, Pumir et al, PRX 2014, Pumir et al, PRL 2016; .



Perspectives

Concerning the physics of turbulence:

much to be learned from studying the motion of particles in a
turbulent flow !

From a broader perspective:

Turbulence: system very far from equilibrium [energy flux in 3D,
several “fluxes” in other cases].

How does one quantify irreversibility ?

What does one relate possible manifestations of irreversibility to the
existing fluxes in the problem ?

How does one generalize “statistical thermodynamics” to systems
very far from equilibrium ?

What happens in other flow systems, of more geo/astro-relevance
(with rotation and stratification, etc) ?



THANK YOU |

Questions ??
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Numerical results
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All pairs have the exactly same length at t = 0, well within the inertial range.
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