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Preamble	
•  What	is	at	stake	in	turbulence:	many	problems	of	crucial	

importance	in	the	natural	sciences	(geo-,	astro-physics,	etc)	or	
in	engineering.	

	
•  From	the	point	of	view	of	fundamental	physics:	turbulence	is	a	

challenging	non-equilibrium	sta%s%cal	mechanics	problem.	
	
						~	one	needs	to	find	the	right	concepts/methods	to	cope	with	a	
highly	non-equilibrium,	nonlinear	system.	
	
•  Here:	explore	the	problem	from	the	point	of	view	of	the	

mo%on	of	individual	par%cles	(the	“lagrangian	approach”).	



The	Lagrangian	point	of	view	
Accurate measurements of particles moving (very fast) 
in a turbulent flow (Cornell/Göttingen; Lyon;  Zürich; 
Copenhagen …). DNS results of similar quality.

              è

What can we learn about turbulence by following 
particles?



Turbulent	mo%on	from	a	par%cle	
perspec%ve	

•  Classical	results:	

				-		At	long	=mes,	GI	Taylor	(1922)	showed	that	the	mo%on	
is	diffusive,	with	a	coefficient	of	diffusion:		
	
	
	
				-		Dispersion	of	a	set	of	par%cles	by	a	turbulent	flow	
(Richardson,	1928):	
		

D = u(x(t), t)u(x(0), 0)
0

∞

∫ dt

R2 (t) ∝ε t3



Turbulent	mo%on	from	a	par%cle	
perspec%ve	

New	perspec%ve:	
						With	the	newly	available	possibili%es	in	experiments	or	
numerical	simula%ons,	describe	the	mo%on	of	par%cles	at	
small	spa%al	and	temporal	scales.		
	
•  				How	does	turbulence	affect	the	mo%on	of	one	par%cle	?		
•  				…	of	several	par%cles	?		
•  				Any	connec%on	with	“stochas%c	thermodynamics”	?	
						

		
	



Time	irreversibility	
	Turbulent	dynamics	(Navier-Stokes	eqns)	
			 		 	~	energy	flux	through	scale	
	 	 	 	~	5me	irreversible	process.	

	
	”A trained eye viewing a movie of turbulence run 

backwards can tell that something is going wrong…”  

(Falkovich	&	Sreenivasan,	Physics	Today	2006)	
	
Can	one	really	dis=nguish	“the	arrow	of	=me”	?	
	(see	e.g.	Pomeau,	1982).	
	



“training	the	eye”:	
	

Two-par5cle	sta5s5cs	



Training	the	eyes	by	following	pairs	
of	par%cles		

			Deduce	the	equa%on	for	the	evolu%on	of	the	rela%ve		
evolu%on	of	two	par%cle	rela%ve	distance:	
	
	
Introduce:	

R(t) = r2 (t)− r1(t); δR(t) = R(t)− R(0)

δR(t)2 = δu(0)2 t2 + δu(0). δa(0) t3 +O(t 4 )

Iden5ty:	(O[	and	Mann	2000,	Pumir	et	al	2001,	Falkovich	et	al	2001)	

1
2
d
dt
(u2 −u1)

2 = δu(0). δa(0) = −2ε

=>	

δu = u1(t)−u2 (t); δa = a1(t)− a2 (t)



Training	the	eyes	by	following	pairs	
of	par%cles		

Consequence:	

δR(−t)2 − δR(t)2 = −2 δu(0). δa(0) t3 +O(t5 )

Use	different	ini%al	
separa%ons,	R0,	different	
Reynolds	numbers	+	rescale	
%me	with	t0=(R0

2/ε)1/3		
	
						Good	data	collapse	!		
	
(Jucha	et	al,	PRL	2014)	



Training	the	eyes	by	following	pairs	
of	par%cles		

Physical	content:	par%cles	separate	faster	backward	in	
%me	than	they	separate	forward	in	%me	!	
	
	=>	Measuring	how	par%cles	separate	does	provide	a	way	
of	dis%nguishing	forward-	and	backward-	evolu%on	by	
looking	at	pairs	of	par%cles.	
	
				



Using	more	par5cles	to		
“train	the	eye”		



More	par5cles	=>	more	info	!	

Analysis:		relate	the	observed		%me-asymmetry	to	fundamental		
proper%es	of	the	velocity	gradient	tensor.		



Chertkov, Pumir, Shraiman (Phys. Fluids, 1999)

Velocity	gradient	
perceived	by	tetrads:	

Perceived	strain:	

Perceived	vor%city:	



Eigenvalues	gi	of	the	moment	of	

iner%a	tensor	(rG	=	center	of	mass):	

Pumir, Shraiman, Chertkov (Phys. Rev. Lett., 2000)

Quan5fying	the	shape	evolu5on	

gij = (ri
a

a=vertices
∑ − ri

G )(rj
a − rj

G )

Define:		



Shape	deforma5on	
Evolu%on	for	the	shape	of	the	set	of	par%cles	(disregard	the	mo%on	of	
the	center	of	mass):	

	 	 	 	 																		dρ/dt = M . ρ
	
	Take	as	an	ini%al	condi%on	a	regular	tetrahedron	of	size	R0	
	Expand	S	in	Taylor	series:				S = S0 + t S1 + t2/2 S2 + …
	
Work	in	the	eigen-basis	of	S0:	eigenvalues	of	S0:		

                                 S0,i ,	with												S0,1 > S0,2  > S0,3

	Obtain	the	following	expression	for	<gi(t)>:	
															
                <gi(t)> = 1/2 R0

2 [ 1 + 2 <S0,i> t 
        + <2 S0,i

2 + S1,i > t2 + O(t3) ]



Shape	deforma5on		
and	5me	asymmetry	t	->	-t	

The	distribu%on	of	the	eigenvalues	of	the	S0,	the	strain	tensor	based	on	
tetrads,	is	skewed;	such	that	

     <S0,2>  > 0

			A	fundamental	property	of	turbulence	(Betchov	1956,	Siggia	1981,	
Ashurst	et	al,	1987)..	
	

		
								
	
	
	
	
	

		Jucha	et	al,	2014	
	
	
	
	
	
	
	

 	



Shape	deforma5on		
and	5me	asymmetry	t	->	-t	

Consequence:	
	The	intermediate	eigenvalue	<g2(t)>	is	sensi%ve	to	the		t -> -t 
asymmetry,	at	first	order	in	t	!	

Jucha	et	al,	PRL	2014	



Shape	deforma5on		
and	5me	asymmetry	t	->	-t	

Physical	meaning:	
	
	
	An	extended,	ini%ally	isotropic	object,	fla[ens	differently	depending	on	
the	arrow	of	%me	

		~	consequence	of	the	sta%s%cal	asymmetry	of	the	rate	of	strain	
tensor,	which	is	itself	a	consequence	of	the	small-scale	genera%on	in	
turbulence.	



Can	one	“train	the	eye”	by	
following	one	par5cle	only	?	



Lagrangian	velocity	increments	

Lagrangian	structure	func%ons:					Dn(τ) = <(δτ  u)n>.	
If	one	flips	the	direc%on	of	%me:																					,	
																								is	unchanged	(Falkovich	et	al,	2012)	!	D2 (τ ) = (δτu)

2

See	Leveque	and	Naso,	EPL	2014,	for	a	more	precise	analysis.	



Can	one	detect	irreversibility	from	one	
single	par%cle	trajectory	?	

Observa%on:	large	velocity	jumps	of	one	given	trajectory	are	
associated	with	a	stronger	par%cle	decelera%on	than	accelera%on.	
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Data	from	par%cle-tracking	experiment.	

Flight-and-crash	event	



Detec%ng	%me	irreversibility	from	single-	
par%cle	trajectory	

Consider	the	kine=c	energy	increments:	

	
and	their	moments:	
	
The	odd	moments	are	not	invariant	under	
They	can	pick	up	the	lack	of	symmetry	seen	
experimentally	!		
	

n.b.:	the	moments																												cannot	be	expressed	in	
terms	of	velocity	increments	only	



Detec%ng	%me	irreversibility	from	single-par%cle	trajectory	
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3D	

Note	that	plateau	range	is	much	more	significant	
than	that	of	the	velocity	structure	func%ons.	
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Asymmetry	of	the	PDF	of	W	and	breaking	
of	detailed	balance	

The	observed	lack	of	symmetry																								
from	the	PDFs	implies	that:	

Detailed	balance	is	broken	!!		

W →−W



…	no	obvious	connec5on	with	the	exis5ng	
results	on	sta5s5cal	thermodynamics…	



A	quan5ta5ve	measure	of	
irreversibility	



How	to	measure	irreversibility	in	a	
turbulent	flow	?	

•  When	the	Reynolds	number	increases,	the	
range	of	excited	scale	becomes	larger.		

Can	one	quan%fy	the	irreversibility,	and	get	a	
no%on	as	how	it	depends	on	the	Reynolds	
number	?	
	
First	problem:	find	a	proper	measure	of	
irreversibility	!	



A	quan%ty	measuring	Irreversibility	(Ir)	

A	naïve	sugges5on:	
	
Origin	of	irreversibility:	the	energy	flux	ε.		

Ir =	ε	??	
	
	Problem:	ε	is	dimensional	–	ie,	it	can	be	made	arbitrarily	
large	or	small	by	changing	the	units.	



At	short	%mes:	

The	observa%on	of	nonzero	odd	moments	of	W	suggests	
that	%me-irreversibility	should	also	be	reflected	in	the	
sta%s%cs	of	the	instantaneous	power	on	a	fluid	par%cle	

In	par%cular,	it	implies	that	the	PDF	of	power	p	is	
nega=vely	skewed.	



A	quan%ty	measuring	Irreversibility	(Ir)	

A	beSer	sugges5on:	
	
Use	the	simplest	non-obvious	moment	of	p,	<p3>,	made	
properly	dimensionless.	
	
							~no%ce	that	p	and	ε	have	the	same	dimension.	
	

Ir =-	<p3>/ε3	
	



Scaling	of	Ir
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Small	scale	genera5on	in	3d	
turbulence	

and		
irreversibility	



What	is	the	content	of	<p3>	?	

	
		 	 	 	 	 	 	<p3>∝	-ε3	Rλ2

	
	Main	result:			in	3D	flows:	
				 	 	 	 		<p3> < 0    ó   <ω.S.ω> > 0	
	
	In	other	words:	the	manifesta%on	of	irreversibility	
observed	from	the	mo%on	of	individual	par%cles	is	a	
consequence	of	small-scale	genera%on	by	
turbulence.		
	Irreversibility	“equals”	small	scale	genera5on	



Decomposi5on	of	accelera5on	

•  Use	the	iden%fy:	
=>	
		 	  

 where                            and 
(see also Tsinober et al, 2001). 

n.b.: pC can be expressed as pC = u.S.u, where S 
is the (symmetric) rate of strain tensor.

a = du / dt = ∂tu+ (u.∇) u

p = a.u = u.∂u /∂t +u.(u.∇u)
= pL + pC

pC ≡ u. (u.∇)upL ≡ u. ∂u /∂t



An	iden5ty	
•  Assume	that	the	sta%s%cal	proper%es	of		

u	and	S	are	sta5s5cally	independent	
	(reasonable,	since	u	is	controlled	by	the	largest	scales	of	the	flow,	
whereas	S	is	controlled	by	the	smallest	scale	quan=ty,	which	are	
expected	to	be	only	weakly	coupled).	
	
	Then:	 	  
•  Use the relation for homogeneous flows (Betchov 1956):

Consequence: 

tr(S3) = − 3
4
ω.S.ω

ω.S.ω > 0⇒ pC
3 < 0

pC
3 = (u. S. u)3 =

8
105

u6 tr(S3)



Elementary	scaling	considera5ons	
•  The	usual	scaling	arguments	impy	that:	

•  How	come	does	one	find		

… and what does it imply for the moments of pC, pL ???

pC
3 ∝ε3Rλ

3 ; pL
3 ∝ε3Rλ

3

pC
2 ∝ε 2Rλ

2 ; pL
2 ∝ε 2Rλ

2

p2 ∝ε 2Rλ
4/3; p3 ∝ε3Rλ

2



Par5al	cancella5on	between	pL	and	pC	

•  Observa%on:	to	a	large	extent,	pC	and	pL	
cancel	each	other!	

| pC + pL | << | pC |, | pL |

pL | pC ≈ −β pC; β <1

pC | pL ≈ − pL



Par5al	cancella5on	between	pL	and	pC	
•  	Weak	correla%ons	between	pC,	and	p;	almost	
no	correla%on	between	pL  and	p.

p | pC ≈ (1−β)pC; β <1
pC | p ≈ p

p | pL ≈ 0
pL | p ≈ 0



Implica5on	for	the	moments	of	p	
•  Taking	into	account	the	independence	of	pL	and	p,	obtain:				

< p2|pC> ≈ (1-β) pC
2

       

so      <p2>≈ (1-β) <pC
2>

	

•  For the third moment:
(…)         <p3>≈ (1-β’)<pC

3>

 where	(1-β’)	is	a	number	smaller	than	(1-β),	but	posi%ve.	
	
Consequence:						(1-β) ~Rλ

-2/3 and (1-β’) ~ Rλ
-1



Independence	of	u	and	S	

Velocity	does	not	show	any	
par%cular	alignment	with	any	of	
the	eigenvectors	of	strain	
nb:	here,	λ1 > λ2 > λ3

The	strain	eigenvalues	
condi%oned	on	u2	depend	weakly	
on	the	magnitude	of	velocity.	



Implica5on	of	<pC
3> < 0 for	frozen	

flows	
•  In	fact,	the	3rd	moment	of		
W(τ)=1/2 [u2(τ)- u2(0)] are	
	nega=ve.
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Ac5on	of	the	different	forces	
ac5ng	on	tracer	par5cles	



A	breakdown	of	the	contribu%ons	to	p	

In	3D:	

In	2D:	

For	sta%onary	homogeneous	turbulence:	



A	breakdown	of	the	contribu%ons	to	p	

The	magnitude	of	the	pressure	gradient	term	also	grows	faster	than	
the	dissipa%on	term.	
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A	breakdown	of	the	contribu%ons	to	p	

−400 −200 0 200 400
10−8

10−6

10−4

10−2

100

normalized quantity

PD
F

 

 

(V.a)/ε
(−V.∇P)/ε
(νV.∇2V)/ε
(V.f)/ε

2D	3D	

The	magnitude	of	the	pressure	gradient	term	overwhelms	the	others.	



Main	contribu%ons	to	the	third	moment	of	the	
power	

In	3D,	the	third	moment	of	the	pressure	gradient	term	does	not		
contribute;	the	third	moment	of	p	comes	from	cross-terms.	

In	2D,																										contributes	to	2/3	of	the	third	moment	of	p.	
è	Pressure	contributes	to	the	large,	nega%ve	accelera%ons.	

Pressure	forces:	in	3D,	if	anything,	they	contribute	more	to	large	
energy	increases	than	energy	losses…	
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differently	skewed	in	2D	and	3D!	
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In	2D,																										contributes	to	2/3	of	the	(nega%ve)	skewness	of	p.	
In	3D,	pressure	gradient	term	is	slightly	posi%vely	skewed!	



Where	does	the	skewness	of	p	come	from?	
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Dissipa%on	term	is	skewed,	but	its	
third	moment	is	small	and	does	
not	contribute	much	to	the	
skewness	of	power.	
However,	cross	terms	do	ma[er	!	



Peculiar	behavior	of	pressure	gradient	

2D	

Pressure	gradient	term	condi%oned	on	the	kine%c	energy	of	the	fluid	par%cle:	
Note	that	

In	3D,	pressure	gradient	tends	to	take	kine%c	energy	away	from	slow	
par%cles	and	give	it	to	fast	par%cles!	
	
A	runaway	mechanism	related	to	the	singularity	problem	of	the	NSE?	

3D	



Summary	
Can	one	detect	%me-irreversibility	from	the	mo%on	of	
par%cles	?	

•  	With	2	par5cles	or	more:	YES		[Jucha	et	al,	PRL,	2014;	
related	to	known-proper%es	of	turbulent	flows]	

•  With	only	1	par5cle	?	YES	[Xu	et	al,	PNAS,	2014]!		

•  	The	irreversibility	in	the	mo%on	of	single	par%cles	IS	
related	to	small-scale	produc%on	[Pumir	et	al,	PRL	2016].	

•  The	normalized	third	moment	of	the	instantaneous	
power	on	a	fluid	par%cle	provides	a	good	measure	of	
how	far	the	system	is	away	from	equilibrium.	

Xu	et	al,	PNAS,	2014	;		Jucha	et	al,	PRL,	2014,	Pumir	et	al,	PRX	2014,	Pumir	et	al,	PRL	2016;	.	



Perspec%ves	
	Concerning	the	physics	of	turbulence:	

much	to	be	learned	from	studying	the	mo5on	of	par5cles	in	a	
turbulent	flow	!	

From	a	broader	perspec%ve:	

	Turbulence:	system	very	far	from	equilibrium	[energy	flux	in	3D,	
several	“fluxes”	in	other	cases].	

	How	does	one	quan%fy	irreversibility	?		

	What	does	one	relate	possible	manifesta%ons	of	irreversibility	to	the	
exis%ng	fluxes	in	the	problem	?	

	How	does	one	generalize	“sta%s%cal	thermodynamics”	to	systems	
very	far	from	equilibrium	?	

	What	happens	in	other	flow	systems,	of	more	geo/astro-relevance	
(with	rota%on	and	stra%fica%on,	etc)	?	



THANK	YOU	!	

Ques4ons	??	
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Numerical	results	
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Homogeneous turbulent flow from the Johns Hopkins database (η=0.003; 
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All pairs have the exactly same length at t = 0, well within the inertial range.
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