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Simple “boundary conditions”, yet the flow field is 
“crumpled” and consists of many scales  
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Turbulence – the highly nonlinear state of a system - an illustration 
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Explicit solutions 
of the equations of motion 

Characterization of 
Steady state statistics 

Not in a thermodynamic equilibrium 

3D, 2D, Boundary layers, elastic … 



The picture of an Energy Cascade 

Energy spectrum E(K) 

Homogeneous 3D – forward cascade Homogeneous 2D inverse cascade 



Highly turbulent flows (Re~109) 

Long lived coherent structures 

Turbulence under rotation 

Atmosphere, Oceans, Flows within the Earth’s mantle 

(Sometimes) driven by  
a homogeneous small-scale 
energy source 

Strong rotation 



Equations and numbers 
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Taylor-Proudman Theorem 
Dominance of rotation implies: 

(Taking the Curl) “Quasi 2D” 

In Atmospheric flows 



• Build up of large scales via energy cascade 
(see  McEwan 1970, de  Verdiere 1980, Hopfinger 1982…) 
• 2D in the large scales (Baroud, Plapp and Swinney, 2003) 

But also: 

Different energy power spectra:  

Baroud et. al. 2002 
time 

Smith and Waleffe 1999 

Option 1: Using the formalism of 2D turbulence 

What is the proper framework for the description of deep rotating turbulence? 



An alternative direction: Wave Turbulence 
(See: Zakharov, L’vov and Falkovich, wave Turbulence, Springer, 1992, Nazarenko  2011, 
Newell and Rumpf, Ann. Rev. Flu. Mech 2011 ) 

wavenumber 

E
ne

rg
y 

Energy input 

Linear Highly nonlinear 

• A system that supports linear waves 

• A unique dispersion relation  ω(k) 

• Nonlinearity via resonant interactions of these waves (time dependant amplitudes) 

• Possible evolution of an (out of equilibrium) ensemble of uncorrelated interacting 
waves with universal statistical properties (various possible closure assumptions). 

• Expected to hold in “moderate” nonlinearity 



Wave turbulence in other systems – experimental observations 

Capillary surface waves E. Falcon, C. Laroche, and S. Fauve PRL 98, 094503 (2007), 
M. Berhanu and E. Falcon, PRE,  87, 033003 (2013) 

Elastic surface bending waves P. Cobelli et al. PRL 103, 204301 (2009)  

Broad spectrum,  energy is concentrated along the dispersion relation 



Properties of inertial waves: 
•   
•    
        

   being the angle between    and     . 

•                             
•  Right/Left helical modes 

Inertial Waves in rotating flows 

This equation supports the propagation of inertial waves: 
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Can rotating turbulence be described as a wave turbulence of inertial waves? 
 
If so 
 
• A 3D description 
 
• Based on a controlled approximation to N.S. Eq. 

• “Solvable” – unique predictions 

Various theoretical predictions and numerical results 
See: : Zakharov, L’vov and Falkovich 1992, Nazarenko 2011, Newell and Rumpf 2011, Cambon  and Godeferd 1996-2006, 
Smith and Waleffe 1999, Galtier 2003, 2014… 

No experimental evidence for the existence of steady inertial wave turbulence 

Observation of inertial waves in non-turbulent flows (Greenspan 1968, Moisy 2012) or during 
transients (Bewley 2007, Davidson 2006, Kolvin 2009) 



Experimental system 

Ω up to 16 Rad/s  

Ω

80 cm

90 cm

Pump

water

Injection device

Rotating table

Laser sheet

camera

h

Max. flow rate 3 L/s => ~ 300 W  

250 outlets and 70 inlets in 
hexagonal lattice 



Camera 

Injection Nozzles 



In a steady state (vorticity field) 



Experiment 1: Turbulence Buildup – long times 

The system is brought to a solid body rotation (u=0) at a given 
rotation rate Ω. 

At t=0, we start injecting energy at a given flow rate (generating a 
step function in the injected power) 

We measure the horizontal velocity (u,v) field at height H 

Deriving energy power spectrum, E(k) and energy density “map”, 
(u2+v2), as functions of time. 
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Energy Density evolution  
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Ω=10 Rad/S, 
Re~103-104 

Ro~1 

A delay 

Energy appears 
simultaneously across 
the entire cross section 



The steady state spectrum 3
5
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Is there a cascade of energy? 



The evolving spectrum 

PRL 79 (21), (1997) - J. Paret, P. Tabeling 
See: Kraichnan 1967, Smith and Yakhot 1994 

In 2D turbulence: 2/32/1)( −−∗ ⋅∝ ttk ε

k*(t) 

Slope:  1.03.0 ±ε
E, Yarom , Y. Vardi  and E. S (2013), Phys. Fluids, 25,  085105 



Short vs. long times 

Spectrum evolution in time (a different representation) 

cascade 
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E(k=0.17 cm-1) 
Two “Populating fronts” 
in the spectrum 

One is linear in k, 
defining τ1(k) 

The second defines τ2(k), 
which decreases with k 

Sharp “arrival” of energy 

 Evolution of the energy spectrum – Short times 



Increased energy injection
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Examples of measurements at lower height:
The more energetic the flow - the shorter 2 is
the higher the rotation the shorter 1 is (color bars and axis, as above)

τ
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Variation of fronts properties with rotation, energy injection and height 
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τ1  is the traveling time of inertial waves to the measuring plane 
(typical velocities ~ 1 m/s) 

All the energy transfer along z is done by inertial waves 

Scaling of τ1 

I. Kolvin, K. Cohen, Y. Vardi and E. S., Phys. Rev. Lett. 102, 014503,(2009).  

The energy carried by an inertial wave of wave number k would arrive at h by a time:
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Searching for inertial waves in steady state 
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A “signature “of inertial waves in steady state! 



Is the energy concentrated along the dispersion curve? 
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A need for 3D measurement 

yes 

• ~ 1000 fps 
• 30 measurement planes 
• ~ 30 “blocks” /s 
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|k| independence of the dispersion curve 

k=0.78 - 1.39 rad/
cm 

k=1.42 - 2.03 rad/
cm 

k=2.06 - 2.64 rad/
cm 

k=2.67 - 3.28 rad/
cm 



The variation with Ω

Ω (rad/
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E. Yarom and E.S. Nature Physics 2014 



Is energy being transferred via wave interactions?  

Measuring the spectrum evolution towards steady state 

In 2D 

The entire spectrum evolution is confined to the dispersion relation. 
 
Consistent with transfer via wave interactions. 

In 3D (ω,θ – plane) 



Limits of the wave turbulence behavior - Spectrum at different Rossby          

Ω = 0.2 – 2 hz 
 

k = 1.73 – 1.85 
rad/cm  



Conclusions 
 
The energy spectrum of deep rotating turbulence and its evolution are 
quantitatively consistent with the idea of inverse energy cascade. 
 
For moderate Re (~103) The energy is contained and transferred by 3D 
inertial waves 
 

The entire 3D turbulent field is, therefore, a wave turbulence of inertial waves 
 
Further quantitative study is needed: the   scaling was not 
predicted theoretically 
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A single pulse 



Helical modes spectrum 

Positive Helicity:  
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Inertial Waves 

•  Define:  
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Inertial Waves – Helical Modes 
•  Vorticity of mode     : 
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