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Simple “boundary conditions”, yet the flow field is
“‘crumpled” and consists of many scales



Outline

*A “cartoon” of turbulence

*Turbulence in rotating systems

Inertial waves

*The experimental system

*Energy spectrum evolution — long times
*Energy spectrum evolution — short times

*|[nertial wave turbulence



Turbulence — the highly nonlinear state of a system - an illustration

Explicit solutions Characterization of
of the equations of motion Steady state statistics
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3D, 2D, Boundary layers, elastic ...



Homogeneous 3D — forward cascade
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The picture of an Energy Cascade
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Turbulence under rotation

Atmosphere, Oceans, Flows within the Earth’s mantle

Highly turbulent flows (Re~109)

Strong rotation

(Sometimes) driven by
a homogeneous small-scale
energy source

Long lived coherent structures




Equations and numbers
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What is the proper framework for the description of deep rotating turbulence?

Option 1: Using the formalism of 2D turbulence

*Build up of large scales via energy cascade
(see McEwan 1970, de Verdiere 1980, Hopfinger 1982...)

2D in the Iarge scales (Baroud, Plapp and Swinney, 2003)
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An alternative direction: Wave Turbulence
(See: Zakharov, L'vov and Falkovich, wave Turbulence, Springer, 1992, Nazarenko 2011,
Newell and Rumpf, Ann. Rev. Flu. Mech 2011 )
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A system that supports linear waves
*A unique dispersion relation w(k)
*Nonlinearity via resonant interactions of these waves (time dependant amplitudes)

*Possible evolution of an (out of equilibrium) ensemble of uncorrelated interacting
waves with universal statistical properties (various possible closure assumptions).

*Expected to hold in “moderate” nonlinearity



Wave turbulence in other systems — experimental observations

E. Falcon, C. Laroche, and S. Fauve PRL 98, 094503 (2007),

Capillary surface waves M. Berhanu and E. Falcon, PRE, 87, 033003 (2013)
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Elastic surface bending waves p. cobelli et al. PRL 103, 204301 (2009)

beam

150
measureme
region
| 'TE 100
t i -
ne - X
50

int vibrator
ator

-5000 0 5000
) o [rad/s]

Broad spectrum, energy is concentrated along the dispersion relation




Inertial Waves in rotating flows

Navier-Stokes equation in a rotating frame:
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This equation supports the propagation of inertial waves:
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Can rotating turbulence be described as a wave turbulence of inertial waves?
If so

*A 3D description

*Based on a controlled approximation to N.S. Eq.

*“Solvable” — unique predictions

Various theoretical predictions and numerical results
See: : Zakharov, L'vov and Falkovich 1992, Nazarenko 2011, Newell and Rumpf 2011, Cambon and Godeferd 1996-2006,

Smith and Waleffe 1999, Galtier 2003, 2014...

Observation of inertial waves in non-turbulent flows (Greenspan 1968, Moisy 2012) or during
transients (Bewley 2007, Davidson 2006, Kolvin 2009)

No experimental evidence for the existence of steady inertial wave turbulence
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Experimental system
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In a steady state (orticity fielq)

Vorticity distribution, mean over 5 PIVs (0.33sec), smoothed: 2
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Experiment 1: Turbulence Buildup — long times

The system is brought to a solid body rotation (u=0) at a given
rotation rate Q.

At t=0, we start injecting energy at a given flow rate (generating a
step function in the injected power)

Energy injection

0 time

We measure the horizontal velocity (u,v) field at height H

Deriving energy power spectrum, E(k) and energy density “map”,
(u%+v2), as functions of time.



Energy Density evolution 010 RadsS
Re~103-104

t=1.3 s t=3.3s R.~1

A delay .

30
Energy appears
simultaneously across
the entire cross section




The steady state spectrum In 2D turbulence: E, (k) = C
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The evolving spectrum
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Ikl (cm™)

Short vs. long times

Spectrum evolution in time (a different representation)
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Evolution of the energy spectrum — Short times
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Variation of fronts properties with rotation, energy injection and height

L. Examples of measurements at lower height:
Increased energy injection The more energetic the flow - the shorter 2 is
> the higher the rotation the shorter t1 is (color bars and axis, as above)
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Scaling of t,

The energy carried by an inertial wave of wave number k would arrive at h by a time: [ = =
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t, is the traveling time of inertial waves to the measuring plane
(typical velocities ~ 1 m/s)

All the energy transfer along z is done by inertial waves

I. Kolvin, K. Cohen, Y. Vardi and E. S., Phys. Rev. Lett. 102, 014503,(2009).



Searching for inertial waves in steady state

Temporal energy spectrum
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Is the energy concentrated along the dispersion curve? yes

D

Dispersion relation:

w = £2Qcos(6) <
A need for 3D measurement
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|k| independence of the dispersion curve
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The variation with Q

= +2Q cos(H)

o /20

E. Yarom and E.S. Nature Physics 2014
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Is energy being transferred via wave interactions?

Measuring the spectrum evolution towards steady state

In 2D In 3D (w,0 — plane)
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The entire spectrum evolution is confined to the dispersion relation.

Consistent with transfer via wave interactions.



Limits of the wave turbulence behavior - Spectrum at different Rossby

:

Ro =0.059

= Q2=02-2hz

k=1.73-1.85
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Conclusions

The energy spectrum of deep rotating turbulence and its evolution are
quantitatively consistent with the idea of inverse energy cascade.

For moderate Re (~103) The energy is contained and transferred by 3D
inertial waves

The entire 3D turbulent field is, therefore, a wave turbulence of inertial waves

Further quantitative study is needed: the E(w) ~ af% scaling was not
predicted theoretically
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A single pulse
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Helical modes spectrum
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Inertial Waves — Helical Modes

« Vorticity of modek @ =Vxii=-skii

» Helicity: h =@ -ii = —sku,

* Define helical modes as new coordinate system: AD
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