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Turbulent jets

(Picture from album of fluid motion)
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Turbulent wakes

(Picture downloaded from the web)
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Homogeneous turbulence

(from Ishihara et al, early/mid 2000s, Japan, Earth
Simulator)
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Grid-generated turbulence

1. Attempt at reasonably homogeneous isotropic turbulence
to check theories of turbulence: 1934 to this day.
2. Attempt at more stirring/mixing than with canonical
free-shear flows (individual wakes, jets, mixing layers)
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Grid-generated turbulence
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Reynolds decomposition

Turbulent flows are fluctuating randomly around a mean

Decompostion as mean U + fluctuations u

i.e. full velocity field = U+ u

Wide range of scales of motion in fluctuating velocity field u

when Reynolds number is high.
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Richardson-Kolmogorov cascade

Mechanism of turbulence dissipation at high Reynolds
number

Kinetic energy of velocity fluctuations cascades from large
scales of motion to small scales of motion.

When it reaches a scale small enough for viscous
dissipation to be effective, it dissipates.

This cascade is an equilibrium cascade where the rate with
which kinetic energy crosses a length-scale l where the
turbulent fluctuations have a characteristic velocity u(l) is
the same from the largest to the smallest length-scale.

Estimate this rate dimensionally as u(l)3/l (no viscosity)
and equate it to the kinetic energy dissipation ǫ = ν < s

2 > – p. 8



Richardson-Kolmogorov cascade

Estimate this rate dimensionally as u(l)3/l (no viscosity)
and equate it to the kinetic energy dissipation ǫ = ν < s

2 >

The largest of these length-scales l must be of the order of
the integral (correlation) length-scale L where
u(l) = u(L) ∼ u′ ≡

√
< u2 >

Hence, ǫ ∼ u′3/L

We write ǫ = Cǫu
′3/L where the dimensionless dissipation

coefficient Cǫ is a constant independent of Reynolds
number.

– p. 9



R-K equilibrium cascade in equations

What is u(l)?

1. Define δu ≡ u(x+ 1
2 l, t)− u(x− 1

2 l, t)

2. < |δu|2 > is a function of x and l and is our definition of
u2(l). The vector l has a norm l = |l|.
3. Write down the Navier-Stokes equations and
incompressibility at both x+ 1

2 l and x− 1
2 l.

∂

∂t
(U+ u) + (U+ u) · ∇ξ(U+ u) = −∇ξ(P + p) + ν∇2

ξ(U+ u)

and ∇ξ ·U = 0, ∇ξ · u = 0

at both ξ = ξ+ ≡ x+ 1
2 l and ξ = ξ− ≡ x− 1

2 l.
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R-K equilibrium cascade in equations

D∗

Dt
< |δu|2 > +∇l· < (δu+ δU)|δu|2 >= P ∗ + T ∗

x +D∗ − ǫ∗

where
D∗

Dt
≡ ∂

∂t
+

1

2
[U(ξ+) +U(ξ−)] · ∇x

This is the fully generalised Karman-Howarth-Monin
equation following Reginald Hill’s work from the mid/late
1990s to the early 2000s. We should perhaps call it the
Karman-Howarth-Monin-Hill or KHMH equation.
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R-K equilibrium cascade in equations

D∗

Dt
< |δu|2 > +∇l· < (δu+ δU)|δu|2 >= P ∗ + T ∗

x +D∗ − ǫ∗

where
D∗

Dt
≡ ∂

∂t
+

1

2
[U(ξ+) +U(ξ−)] · ∇x

(i) Consider high enough Reynolds numbers so that the
two-point viscous diffusion term D∗ may be neglected;
(ii) consider regions of turbulent flows where the integral
scale L of the turbulent fluctuating velocity is small
compared to length-scales characterising spatial variations
in x of mean fow statistics. Then for l << L and l >> ηviscous

∂

∂t
< |δu|2 > +U(x) · ∇x < |δu|2 > +∇l· < δu|δu|2 >= −4ǫ
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Kolmogorov’s 1941 assumption

Characteristic times of small scale (l << L) motions very
small compared to time scale of turbulence decay hence:

∂

∂t
< |δu|2 > +U(x) · ∇x < |δu|2 >≈ 0

The equilibrium cascade then follows in the form

∇l· < δu|δu|2 >≈ −4ǫ

Integrate both sides over a sphere of radius |l| = l and get
∫

l̂· < δu|δu|2 > dΩ ≈ −16π

3
ǫl

If you assume isotropy this becomes < (δu · l̂)3 >≈ −4
5ǫl
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R-K equilibrium cascade: dissipation

For l ∼ L, expect
∫

l̂· < δu|δu|2 > dΩ ∼ u′3

which, with equilibrium, then implies u′3 ∼ ǫL.

Equilibrium dissipation law:
ǫ = Cǫu

′3/L with Cǫ = Const

Notes:
(1) Equilibrium OVER THE ENTIRE INERTIAL RANGE,
THAT IS INCLUDING l ∼ L, is required to obtain
ǫ = Cǫu

′3/L with Cǫ = Const

(2) The inverse is not necessarily true: ǫ = Cǫu
′3/L with

Cǫ = Const does not mean there must be equilibrium.
– p. 14



R-K equilibrium cascade: spectra

Define S ≡< (δu · l̂)3 > / < (δu · l̂)2 >3/2 so that

< (δu · l̂)2 >≈ C2(ǫl)
2/3 where C2 = (−4

5S )
2/3

Assuming S = Const, this last relation is often given in its
equivalent energy spectral form (in the range
2π/L ≪ k1 ≪ 2π/ηviscous)

E11(k1) ≈ C1ǫ
2/3k

−5/3
1 where C1 ≈ C2/4

Note consistency:

u′2 ∼
∫ L−1

0 E(k)dk +
∫ +∞

L−1 E(k)dk

which with
∫ L−1

0 E(k)dk ∼ u′2 and E(k) ∼ ǫ2/3k−5/3

implies ǫ ∼ u′3/L
– p. 15



Range of scales

1. A sufficient condition for the diffusion term ν∇2
l
< |δu|2 >

to be negligible compared to 4ǫ and therefore drop out so as
to be left with

∂

∂t
< |δu|2 > +U(x) · ∇x < |δu|2 > +∇l· < δu|δu|2 >= −4ǫ

is that l ≫ λ where λ2 ≡ νu′2/ǫ.
(See Laizet, V & Cambon, FDR 45(6), 061408, 2013).

2. In small-scale isotropic turbulence, λ ∼ d where d is the
average distance between stagnation points of the
fluctuating velocity. The fluctuating velocity is “rougher” at
scales larger than λ than it is at scales smaller than λ.
(See Goto & V, PoF 21, 035104, 2009).
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Range of scales

Use λ2 ≡ νu′2/ǫ and ǫ = Cǫu
′3/L to obtain

L/λ ∼ CǫReλ

where Reλ ≡ u′λ
ν is a local Reynolds number dependent on

the position in the flow since u′ and λ depend on x.

Demonstrates that L ≫ λ if Reλ ≫ 1 and therefore that
intermediate scales l where λ ≪ l ≪ L exist.

For the Richardson-Kolmogorov cascade, the higher Reλ
the higher the range of scales required for the turbulent
energy to be dissipated. This follows from the R-K
equilibrium consequence that Cǫ = const.
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The R-K equilibrium cascade matters

BECAUSE:

The turbulence problem is to reliably reduce the number of
degrees of freedom (either universally or in different ways in
different universality classes) and the turbulence dissipation
scaling and the turbulence cascade seem to be essential
stepping stones in this direction

This reduction of number of degrees of freedom may take
the form of
(i) a moment closure (e.g. k-ǫ if 1-point, EDQNM if 2-point)
(ii) a filtering approach, e.g. Large Eddy Simulations (LES)
(iii) a dynamical systems approach (state-space attractors)

– p. 18



The R-K equilibrium cascade matters

BECAUSE:

(i) the turbulent eddy viscosity νt in one-point RANS models
of turbulence is estimated using νt ∼ u′L and ǫ = Cǫu

′3/L
where Cǫ = Const:

νt ∼ Cǫu
′4/ǫ;

(ii) two-point turbulence modelling such as Large Eddy
Simulation relies on the R-K equilibrium cascade;

(iii) the number of degrees of freedom is usually estimated
as (L/η)3 where η = (ν3/ǫ)1/4 is the Kolmogorov microscale.
The equilibrium relation ǫ = Cǫu

′3/L where Cǫ = Const is

crucial in determining that (L/η)3 ∼ C
3/4
ǫ Re

9/4
L ; ReL is

another local Reynolds number based on u′ and L.
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And because

(iv) the combination of the equilibrium dissipation relation
ǫ = Cǫu

′3/L and an invariant quantity (Saffman,Loitsianski
or other) determines the turbulence decay of homogeneous
turbulence.

(v) the equilibrium dissipation relation ǫ = Cǫu
′3/L

determines the streamwise development of mean profiles of
self-preserving turbulent free shear flows.

Quote from Lumley (1992): “What part of modeling is in
serious need of work? Foremost, I would say, it is the
mechanism that sets the level of dissipation in a turbulent
flow, particularly in changing circumstances.”

– p. 20



Self-preserving wake profiles

U∞ − U(x, r) = u0(x)f [r/L0(x)]

We assume that the wake becomes axisymmetric at some
point donwstream.

– p. 21



Townsend 1976, George 1989

The Reynolds-averaged streamwise momentum equation
for an axisymmetric wake in a uniform and constant stream,

U∞

∂
∂x(U∞ − U) = −1

r
∂
∂rr < u′xu

′

r >

has the general self-preserving solution
U∞ − U = u0(x)f [r/L0(x)]

and
< u′xu

′

r >= R0(x)g[r/L0(x)]

under the conditions
d
dxL0(x) ∼ R0

U∞u0
and u0L

2
0 ∼ U∞θ2 = Const

where θ is the conserved momentum thickness.

2 conditions for 3 unknowns (L0, u0, R0), so make use of
kinetic energy equation.
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Townsend 1976, George 1989

The Reynolds-averaged kinetic energy equation for an
axisymmetric wake in a uniform and constant stream,

U∞

∂
∂xK = − < u′xu

′

r >
∂U
∂r + Transport− ǫ

has the general self-preserving solution
K(x, r) = K0(x)k[r/L0(x)],
Transport = T0(x)t[r/L0(x)]

and
ǫ = D0(x)e[r/L0(x)]

under the additional conditions
d
dxL0(x) ∼ T0

K0U∞

∼ D0L0

K0U∞

and K0 ∼ u20

IN TOTAL: 5 conditions for 6 unknowns u0, L0, R0, K0, To
and D0, so need one more relation:

D0 ∼ K
3/2
0 /L0
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Townsend 1976, George 1989

D0 ∼ K
3/2
0 /L0 is ǫ = Cǫu

′3/L with Cǫ = const adapted to this
self-preserving flow

and implies

u0/U∞ ∼ (x−x0

θ )−2/3

&
L0/θ ∼ (x−x0

θ )1/3
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Wind tunnels

0.912m2 width; test section 4.8m; max speed 45m/s;
background turbulence ≈ 0.25%.

0.462m2 width; test section ≈ 4.0m; max speed 33m/s;
background turbulence ≈ 0.4%.
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Df = 2, σ = 25% fractal square grids

and equal Meff ≈ 2.6cm, Lmax ≈ 24cm, Lmin ≈ 3cm, N = 4,
T = 0.46m.

BUT tr = 2.5, 5.0, 8.5, 13.0, 17.0

– p. 26



Recent grid & wake turbulence research

One main outcome

Grid and axisymmetric wake turbulence experiments have
shown that, when ReI =

U∞Lb

ν is large enough, a significant

turbulence decay region exists where Exx(kx) ∼ k
−5/3
x over

wide range but Cǫ ∼ ReI/ReL ∼
√
ReI/Reλ, i.e.

ǫ ∼ U∞Lbu
′2/L2, where ReL = u′L

ν and Reλ = u′λ
ν .

Seoud & V (PoF 2007), Mazellier & V (PoF 2010), Valente &
V (JFM 2011, PRL 2012, JFM 2014), Gomes-Fernandes et
al (JFM, 2012), Dairay, Obligado & V (JFM 2015) from our
group; but also Nagata et al (PoF June 2013) from Nagoya,
Japan; Discetti et al (FDR October 2013) from Arizona
State, USA; Hearst & Lavoie (JFM 2014) from Toronto,
Canada; Isaza et al (JFM 2014) from Cornell, USA. – p. 27



Streamwise turbulence intensity
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Wake-interaction length-scale
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√
t0x∗

xpeak ≈ 0.45x∗

From Mazellier & V (PoF 2010)
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Wake-interactions
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Lu/λ andReλ in FSG turbulence

Lu/λ is about constant where Reλ decays
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This approximately constant value is set by ReI = U∞Lb/ν.
The constant L/λ increases with increasing U∞.
L/λ = Cǫ

15Reλ, hence L/λ = const iff Cǫ ∼ Const/Reλ.
From Mazellier & V (PoF 2010)
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How universal is this?

– p. 32



Cǫ ∼ RemI /RenL with m ≈ 1 ≈ n
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Cǫ ∼ RemI /RenL (plots above with m = n = 1) in the high-ReL
decay region followed by Cǫ ∼ const in the further

downstream low-ReL decay region.
Note low-ReL far-downstream region x > 5xpeak ≈ 2x∗
where Cǫ ≈ Const for RG60: 4 eddy turnovers from xpeak to
5xpeak and 3-4 eddy turnovers from 5xpeak to 24xpeak. – p. 33



However wide near−5/3 at x/x∗ ≈ 0.6

The first region can be quite significant in length and is

definitely the region with the (by far) best Exx(kx) ∼ k
−5/3
x .
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This and previous slide from Valente & V (PRL 2012) – p. 34



Earlier evidence forCǫ ≡ ǫL/u′3 = const

Plot from Sreenivasan (1984): 4 highest Reλ points are
obtained by Kistler & Vebralovich (1966) at same point x by
varying ReI . Cǫ ∼ ReI/ReL would then not show up and
give 4 points with same value as ReL at that point would
change in proportion to ReI .
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Summary of wind tunnel Cǫ results

In decay region of fractal/regular grid turbulence and
axisymmetric wakes, Cǫ ∼ ReI/ReL ∼

√
ReI/Reλ with very

clear near −5/3 energy spectra over decade or more.

This occurs where xpeak < x < xe (and xe ≈ 5xpeak for
RG60). Further downstream where the Reynolds number
has decayed further, Cǫ ≈ const for RG60.

(It has been possible to check the far downstream
constancy of Cǫ only for RG60, our regular grid wih the
smallest mesh. Test sections not long enough for the other
grids.)

Note that the range xpeak to 5xpeak is about 2M to 10M in
classical grids with σ ≈ 40% whereas it is about 5M to 25M
in our FSGs and RGs with few large meshes; there σ ≈ 25%
or lower

– p. 36



DNS of turbulence with periodic B.C.

DNS OF SPATIALLY PERIODIC INCOMPRESSIBLE
TURBULENCE WITH SPATIAL PERIOD lB. BOTH
DECAYING AND FLUCTUATING IN TIME.

Application of a steady force f =
(sin(2πmx/lB) cos(2πmy/lB),− cos(2πmx/lB) sin(2πmy/lB), 0)
(where m is an integrer) to the incompressible
Navier-Stokes equations.
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Cyclic turbulence
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Cyclic turbulence
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From Goto, Saito & Kawahara (2015) – p. 39



Case I

Case I: Decaying turbulence
m = 4 and switched off forcing when ǫ(t) reached max.
L(t) < lB/10 during relevant decay.
Considered 5 different values of initial ReI corresponding to
simulation sizes between 1283 and 10243 for similar
small-scale resolutions.
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Decaying turbulence
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Case II

Higher Reynolds numbers: m = 1 and keep the forcing on
throughout.

Considered 7 different values of global ReI (based on the
long-time averages of u′(t) and L(t)) corresponding to
simulation sizes between 643 and 20483 for similar
small-scale resolutions.
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Forced turbulence
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Cǫ(t) ∼
√
ReI/Reλ again
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Dǫ ≡ Cǫ(t)Reλ(t)/
√
ReI tends to vary around a constant as

Reynolds number tends to ∞
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Interscale energy flux

∂
∂tE(k, t) = − ∂

∂kΠ(k, t)− 2νk2E(k, t)

i.e.
∫

∞

k
∂
∂tE(k, t) ≈ Π(k, t)− ǫ(t)

for 1/L ≪ k ≪ 1/λ.

Define CΠ(k, t) by Π(k, t) = CΠ(k, t)u
′(t)3/L(t) and calculate

it for various values of k larger than kf and smaller than 1/λ.
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Flux at k = 5kf (k/kf = 10, 20 similar)
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Conclusion for Periodic DNS study

1. ǫ ∼ (νReI)u
′2/L2 i.e. Cǫ ∼ ReI/ReL ∼

√
ReI/Reλ also

present in DNS of spatially periodic unsteady turbulence, as
it is in turbulence generated by various types of grids and in
axisymmetric turbulent wakes. DNS of forced periodic
turbulence shows that this dissipation scaling does not only
hold when the turbulence is decaying during the forced
cycle but even when the turbulence is building up!

2. In these DNS, the interscale energy flux for intermediate
wavenumbers scales in the same way, i.e.
Π(k, t) = DΠ(k)(νReI)u

′(t)2/L(t)2

See Goto & V Phys. Lett. A 379, 1144 (2015)

Consequences for self-preserving axisymmetric wakes?
– p. 47



Self-preserving turbulent wakes

U∞ − U(x, r) = u0(x)f [r/δ(x)]

Usually one assumes that the wake becomes
self-preserving at some point donwstream...
and axisymmetry also helps...

– p. 48



Tennekes & Lumley 1972

The Reynolds-averaged streamwise momentum equation
for an axisymmetric wake in a uniform and constant stream,

U∞

∂
∂x(U∞ − U) = −1

r
∂
∂rr < uxur >

has the general self-preserving solution
U∞ − U = u0(x)f [r/δ(x)]

and
< uxur >= u20g[r/δ(x)]

under the conditions
d
dxδ(x) ∼ u0

U∞

and u0δ
2 ∼ U∞θ2 = Const

where θ is the conserved momentum thickness.

2 conditions for 2 unknowns (δ, u0), so get

u0/U∞ ∼ (x−x0

θ )−2/3 & δ/θ ∼ (x−x0

θ )1/3
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Townsend 1976

The Reynolds-averaged streamwise momentum equation
for an axisymmetric wake in a uniform and constant stream,

U∞

∂
∂x(U∞ − U) = −1

r
∂
∂rr < uxur >

has the general self-preserving solution
U∞ − U = u0(x)f [r/δ(x)]

but
< uxur >= R0(x)g[r/δ(x)]

under the conditions
d
dxδ(x) ∼ R0

U∞u0
and u0δ

2 ∼ U∞θ2 = Const

where θ is the conserved momentum thickness.

2 conditions for 3 unknowns (δ, u0, R0), so make use of
kinetic energy equation.

– p. 50



Townsend 1976, George 1989

The Reynolds-averaged kinetic energy equation for an
axisymmetric wake in a uniform and constant stream,

U∞

∂
∂xK = − < uxur >

∂U
∂r + Transport− ǫ

has the general self-preserving solution
K(x, r) = K0(x)k[r/δ(x)],
Transport = T0(x)t[r/δ(x)]

and
ǫ = D0(x)e[r/δ(x)]

under the additional conditions
d
dxδ(x) ∼ T0δ

K0U∞

∼ D0δ
K0U∞

and K0 ∼ u20

IN TOTAL: 5 conditions for 6 unknowns δ, u0, R0, K0, To and
D0. So need one more relation:

D0 ∼ K
3/2
0 /δ

– p. 51



Taylor 1935, Kolmogorov 1941

D0 ∼ K
3/2
0 /δ is effectively

ǫ ∼ K3/2/L (introduced in a single off the cuff sentence by
Taylor in 1935 and given a theoretical basis by
Kolmogorov’s equilibrium cascade in 1941) but adapted to
self-preserving turbulent shear flows with the assumption
that δ ∼ L

The Townsend-George approach implies

u0/U∞ ∼ (x−x0

θ )−2/3

&
δ/θ ∼ (x−x0

θ )1/3

like Tennekes & Lumley (1972).

– p. 52



Equivalent theories?

u0/U∞ ∼ (x−x0

θ )−2/3 & δ/θ ∼ (x−x0

θ )1/3

follow from both approaches. Does it mean that the two
approaches are effectively equivalent except that Townsend
(1976) and George (1989) predict K0 ∼ u20 whereas
Tennekes & Lumley (1972) have no say on K0?

Well....not quite because R0 ∼ u20 for Tennekes & Lumley
(1972) but actually George (1989) predicts

R0 ∼ U∞u0
d
dxδ

But so what? Given the scalings ofu0 and δ there is no way
to distinguish between R0 ∼ u20 and R0 ∼ U∞u0

d
dxδ.

Unless the turbulence dissipation does not scale as in the
Richarson-Kolmogorov equilibrium theory...
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Self-preserving turbulent wakes

U∞ − U(x, r) = u0(x)f [r/δ(x)]

Self-preserving axisymmetric turbulent wakes beyond some
point downstream.

– p. 54



Townsend 1976

The Reynolds-averaged streamwise momentum equation
for an axisymmetric wake in a uniform and constant stream,

U∞

∂
∂x(U∞ − U) = −1

r
∂
∂rr < uxur >

has the general self-preserving solution
U∞ − U = u0(x)f [r/δ(x)]

but
< uxur >= R0(x)g[r/δ(x)]

under the conditions
d
dxδ(x) ∼ R0

U∞u0
and u0δ

2 ∼ U∞θ2 = Const

where θ is the conserved momentum thickness.

2 conditions for 3 unknowns (δ, u0, R0), so make use of
kinetic energy equation.

– p. 55



Townsend 1976, George 1989

The Reynolds-averaged kinetic energy equation for an
axisymmetric wake in a uniform and constant stream,

U∞

∂
∂xK = − < uxur >

∂U
∂r + Transport− ǫ

has the general self-preserving solution
K(x, r) = K0(x)k[r/δ(x)],
Transport = T0(x)t[r/δ(x)]

and
ǫ = D0(x)e[r/δ(x)]

under the additional conditions
d
dxδ(x) ∼ T0δ

K0U∞

∼ D0δ
K0U∞

and K0 ∼ u20

IN TOTAL: 5 conditions for 6 unknowns δ, u0, R0, K0, To and
D0. So need one more relation:

D0 ∼ K
3/2
0 /δ or D0 ∼ U∞LbK0/δ

2?
– p. 56



Which dissipation scaling to apply?

Cǫ = const, i.e. D0 ∼ K
3/2
0 /δ

implies u0/U∞ ∼ (x−x0

θ )−2/3 & δ/θ ∼ (x−x0

θ )1/3

and CANNOT distinguish between R0 ∼ u20 and
R0 ∼ U∞u0

d
dxδ.

Cǫ ≈ ReI/ReL, i.e. D0 ∼ U∞LbK0/δ
2

implies
u0/U∞ ∼ (x−x0

θ )−1(Lb/θ)
−1 & δ/θ ∼ (x−x0

θ )1/2(Lb/θ)
1/2

and CAN distinguish between R0 ∼ u20 and R0 ∼ U∞u0
d
dxδ.

Note: δ is a measure of the wake width and is taken to be δ
where δ2 =

∫

∞

0
U∞−U

u0
rdr.

– p. 57



Wakes of flat plates normal toU∞

all with equal surface area A. Here Lb ≡
√
A.

– p. 58



Reynolds numbers and spectra

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

x/θ

(u
0
δ
)/
ν

10
0

10
2

10
4

10
−10

10
−5

10
0

f (Hz )
F
2
2
(u

r
/
U

∞
)

Along centreline.

– p. 59



Approximate axisymmetry at x ≥ 10Lb
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Approximate axisymmetry at x ≥ 10Lb
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Self-similarity with δ2 ≡
∫∞
0

U∞−U
u0

rdr

0 1 2 3
0

0.2

0.4

0.6

0.8

1

η = r/δ

f
(η

)
=

(U
∞
−

u
)/
u
0

Data for 2nd iteration “fractal” plate at
x = 5Lb, 10Lb, 15Lb, 20Lb, 25Lb, 30Lb, 35Lb, 40Lb, 45Lb, 50Lb
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1st iteration “fractal” plate
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new dissipation law.
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2nd iteration “fractal” plate
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3d iteration “fractal” plate
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u0/U∞ = A(x−x0
θ )−α and δ/θ = B(x−x0

θ )β

Use a MATLABTM nonlinear least-squares regression
algorithm to determine coefficients, exponents and virtual
origins.

A −x0A/θ α B −x0B/θ β

1.5(1) 21.53 -28.31 1.22 0.34 -15.76 0.53
1.5(2) 8.15 -14.77 1.06 0.42 -9.69 0.49
1.5(3) 12.70 -20.44 1.12 0.49 -5.16 0.46

α = 2/3 and β = 1/3 if D0 ∼ u30/L0 (Cǫ = const).

α = 1 and β = 1/2 if D0 ∼ (U∞Lb

ν )(u0L0

ν )−1u30/L0

(Cǫ ≈ ReI/ReL).
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u0/U∞ = A(x−x0
θ )−α and δ/θ = B(x−x0

θ )β

1. Calculate d
dx(u0/U∞)−1/α and d

dx(δ/θ)
1/β for a range of

values of α and β
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2. Chose the values of α and β for which a linear fit
c1x/θ + c2 of above plots is such that c1 = 0.
3. Then estimate A−1/α and B1/β from c2 in each plot.
4. Having A, α, B and β, then estimate x0 for each plot. – p. 67



u0/U∞ = A(x−x0
θ )−α and δ/θ = B(x−x0

θ )β

A −x0A/θ α B −x0B/θ β

1.5(1) 7.67 13.65 1.03 0.36 13.56 0.52
1.5(2) 6.53 12.13 1.01 0.39 11.96 0.51
1.5(3) 3.61 2.62 0.89 0.53 2.53 0.44

α = 2/3 and β = 1/3 if D0 ∼ u30/L0 (Cǫ = const).

α = 1 and β = 1/2 if D0 ∼ (U∞Lb

ν )(u0L0

ν )−1u30/L0

(Cǫ ≈ ReI/ReL).

– p. 68



Conclusion: turbulent wake scalings

Consequence of Cǫ ≈ ReI/ReL, i.e. of
D0 ∼ (U∞Lb

ν )(u0L0

ν )−1u30/L0, validated in the wake of
fractal-like plates in range 5Lb ≤ x ≤ 50Lb where Lb =

√
A.

This consequence is that (u0/U∞)−1 and (δ/θ)2 vary linearly
with streamwise distance x from plate (over x-range
considered). No such behaviour has been detected yet for
any other turbulent free shear flow, but it could be present in
many if one knows where to look.

We should therefore be able to distinguish between R0 ∼ u20
and R0 ∼ U∞u0

d
dxδ. Can we?

– p. 69



Wakes of flat plates normal toU∞

Df1.5(2)

Lx

Ly = 15Lb

Lz = 15Lb

xp = 10Lb

HWA (U∞Lb/ν = 40000) and DNS (U∞Lb/ν = 5000) with
Incompact3D (Laizet & Lamballais 2009 and

http://code.google.com/p/incompact3d/)
Wakes statistically axisymmetric at streamwise distances

greater than 10Lb from plate
– p. 70



U∞ − U(x, r) = u0(x)f (η), η ≡ r/δ
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Self-preserving Reynols shear stress

< uxur > /maxr(< uxur >) versus η ≡ r/δ(x)
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Reynolds shear stress scaling

Tennekes & Lumley (1972): R0 ∼ u20

George (1989): R0 ∼ U∞u0
d
dxδ

No real difference if D0 ∼ K
3/2
0 /δ.

But the two R0 scalings are different if D0 ∼ U∞LbK0/δ
2, in

which case it should be possible to distinguish between
them.

– p. 73



Tennekes & Lumley (1972)

< uxur > /u20 versus η ≡ r/δ(x)
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George (1989) atx/Lb ≥ 20

< uxur > /(U∞u0dδ/dx) versus η ≡ r/δ(x)
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Self-preserving TKE at x/Lb ≥ 20

K(x, r)/maxr(K) versus η ≡ r/δ(x)
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Townsend 1976 and George 1989

K(x, r)/u20 versus η ≡ r/δ(x)
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Different TKE scaling

K(x, r)/(U∞u0dδ/dx) versus η ≡ r/δ(x)
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K0(x) ∼ (U∞u0dδ/dx) for x ≥ 20Lb

The failure of K0 ∼ u20 points to a failure of
U∞

∂
∂xK = − < uxur >

∂U
∂r + Transport− ǫ

because Production ≈ −〈uxur〉 ∂U
∂r is essential for obtaining

K0 ∼ u20.

Our DNS shows that the production term is dominated by
normal stress terms on and around the centreline and that
these normal stress terms are not negligible off centreline
either. They are also not quite self-preserving,
(See Dairay, Obligado & V, JFM 781, 2015)

SOLUTION: use the TKE equation in the general form

U∞

∂
∂xK = P + T − ǫ

and do NOT assume self-preservation for P and T .
– p. 79



Dissipation is self-preserving atx ≥ 20Lb

ǫ(x, r)/maxr(ǫ) versus η ≡ r/δ(x)
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Revised Townsend-George theory

The Reynolds-averaged streamwise momentum equation
for an axisymmetric wake in a uniform and constant stream,

U∞

∂
∂x(U∞ − U) = −1

r
∂
∂rr < uxur >

has the general self-preserving solution
U∞ − U = u0(x)f [r/δ(x)]

and
< uxur >= R0(x)g[r/δ(x)]

under the conditions
d
dxδ(x) ∼ R0

U∞u0
and u0δ

2 ∼ U∞θ2 = Const

where θ is the conserved momentum thickness.

2 conditions for 3 unknowns (δ, u0, R0), so make use of
kinetic energy equation.

– p. 81



Revised Townsend-George theory

The Reynolds-averaged kinetic energy equation for an
axisymmetric wake in a uniform and constant stream,

U∞

∂
∂xK = Production+ Transport− ǫ

has the general self-preserving solution
K(x, r) = K0(x)k[r/δ(x)],

Production+ Transport = PT0(x)t[r/δ(x)]
and

ǫ = D0(x)e[r/δ(x)]

under the additional conditions
U∞

dK0

dx ∼ U∞K0

δ
dδ
dx ∼ D0

IN TOTAL: 4 conditions for 6 unknowns δ, u0, R0, K0 and
D0. Not enough to use

D0 ∼ K
3/2
0 /δ

– p. 82



BUT!

If we dispense with the idea that the small-scale turbulence
is in Richardson-Kolmogorov equilibrium and therefore we

remove the main basis for D0 ∼ K
3/2
0 /δ (i.e. ǫ ∼ K3/2/L)

and if we adopt instead the non-equilibrium dissipation law
ǫ ∼ U∞LbK/L2, i.e. D0 ∼ U∞LbK0/δ

2

–see Ann. Rev. Fluid Mech. 47, 95-114 (2015) & Goto & V
Phys. Lett. A 379, 1144 (2015)–

then the conditions can be solved and we get:
R0 ∼ U∞u0

dδ
dx as in George (1989)

and
δ(x)
θ ∼ (x−x0

θ )1/2(Lb/θ)
1/2 and u0

U∞

∼ (x−x0

θ )−1(θ/Lb)

in agreement with DNS and HWA data.

– p. 83



Conclusion

George (1989) WITHOUT Kolmogorov equilibrium
ǫ ∼ K3/2/L BUT WITH non-equilibrium dissipation
ǫ ∼ U∞LbK/L2 AND WITH WEAK RATHER THAN
STRONG self-preservation
implies
R0 ∼ U∞u0

dδ
dx as in George (1989)

δ(x)
θ ∼ (x−x0

θ )1/2(Lb/θ)
1/2 and u0

U∞

∼ (x−x0

θ )−1(θ/Lb)

New dissipation law valid in axisymmetric self-preserving
turbulence wakes too (see Dairay et al JFM 781 (2015) and
Obligado et al PRE (2016)). It is the only dissipation scaling
for which revised Townsend-George theory can be
conclusive!
What happens much further downstream? Surely not
tending towards classical equilibrium as local ReL is
dropping, even if tending towards ǫ ∼ K3/2/L? – p. 84



Reminder conclusion

In various cases of unsteady turbulence (fractal grids,
regular grids, axisymmetric wakes, periodic turbulence)

Cǫ ≈ ReI/ReL i.e. ǫ ∼ U∞Lbu
′2/L2

over several (initial) eddy turnover times.

There are very well defined −5/3 energy spectra over more
than a decade in this region. But not caused by equilibrium
cascade which seems absent here.

Consequence for mean flow deficit u0(x) and wake width
δ(x) of axisymmetric weakly self-preserving wakes :
(u0/U∞)−1 and (δ/θ)2 vary linearly with streamwise distance
from the wake generator.

– p. 85



K0 ∼ U∞u0
dδ
dx ?

< u2r > /maxr(< u2r >) versus η ≡ r/δ(x)
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Assumption of constant anisotropy

√

< u2x > / < u2r > versus x/Lb
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Assumption of constant anisotropy

The correlation function between ux and ur and the ratios of
the r.m.s. values of ux, ur and uφ are constant on the
surface r = δ(x) defining the locations of the maximum
Reynolds shear stress.

It takes a little algebra to show that the revised
Townsend-George theory plus this assumption imply

K0 ∼ U∞u0
dδ
dx

And if we add to this revised theory + assumption of
constant anisotropy the tradtional dissipation law
ǫ ∼ K3/2/L (instead of the non-equilibrium dissipation law
ǫ ∼ U∞LbK/L2), then we obtain the wake laws of Tennekes
& Lumley, Townsend and George:

u0/U∞ ∼ (x−x0

θ )−2/3 & δ/θ ∼ (x−x0

θ )1/3 – p. 88



Vortex shedding andLb =
√
A
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u0δ
2 = U∞θ2
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