Turbulence of surface water waves

Quentin Aubourg, Nicolas Mordant

Laboratoire des Ecoulements Géophysiques et Industriels Université de Grenoble Alpes, France

WATU project

European Research Council Established by the European Commission

Wave turbulence ?

Weak Turbulence Theory

main hypotheses of weak turbulence theory:

- large system
- weak non linearity: time scale separation T_{linear} << T_{nonlinear}
- ➡ statistical theory for the **slow time evolution of statistical quantities** (PDF, Fourier spectrum...)

example: thin elastic plate (flexion waves)

G. Düring, S. Rica, C. Josserand, PRL 97 (2006)

• dynamical nonlinear wave equation (Föppl - Von Karman eqs)

$$\rho \frac{\partial^2 \zeta}{\partial t^2} = -\frac{Eh^2}{12(1-\sigma^2)} \Delta^2 \zeta + \{\zeta, \chi\}$$
non linearity

$$\frac{1}{E}\Delta^2\chi = -\frac{1}{2}\{\zeta,\zeta\}$$

 $\zeta(x, y, t)$ deformation from flat plate $\chi(x, y, t)$ Airy stress function $\{f, g\} = f_{xx}g_{yy} + f_{yy}g_{xx} - 2f_{xy}g_{xy}$ *h* plate thickness *E* Young's modulus *σ* Poisson's coefficient *ρ* specific mass

weak turbulence theory → evolution equation for the wave action spectrum (kinetic equation)

$$\frac{dn_k^s}{dt} = 12\pi \int |J_{\mathbf{k}\mathbf{k}_1\mathbf{k}_2\mathbf{k}_3}|^2 \sum_{s_1s_2s_3} n_{\mathbf{k}_1}n_{\mathbf{k}_2}n_{\mathbf{k}_3}n_{\mathbf{k}} \left(\frac{1}{n_{\mathbf{k}}} + \frac{s_1}{n_{\mathbf{k}_1}} + \frac{s_2}{n_{\mathbf{k}_2}} + \frac{s_3}{n_{\mathbf{k}_3}}\right) \delta(\omega_k + s_1\omega_{k_1} + s_2\omega_{k_2} + s_3\omega_{k_3})$$

energy exchanges through wave resonances

stationary solutions → Kolmogorov-Zakharov spectrum

 $E_{\zeta}(k) = C \frac{P^{1/3}}{\left[12(1-\sigma^2)\right]^{1/6}} \frac{\ln^{1/3}(k^{\star}/k)}{\sqrt{E/\rho}k^3} \qquad P: \text{energy} \\ \text{dissipation rate}$

wave turbulence

very diverse phenomenology

- weak turbulence
- **strong** wave turbulence: structures solitons, singularities
- multiple cascades in scales

(energy, action, momentum,...) Bose-Einstein condensate

- coexistence with Fluid Turbulence
- finite size effects

wide range of applications:

not restricted to fluids !

- geophysics oceanic/atmospheric waves
 - ➡ climate modeling, wave forecasting
- plasmas confinement issues in ITER, solar winds
- non linear optics semiconductor/fiber lasers
- **condensed matter** formation of BEC, superfluid turbulence

need for experimental input and for deeper statistical analysis

Probe the fundamental nonlinear coupling for water waves

Gravity-capillary surface water waves

Linear dispersion relation :

$$\omega = \sqrt{gk + \frac{\gamma}{\rho}k^3}$$

our experiment:

$$\omega/2\pipprox$$
 1 to 60 Hz $\lambda=2\pi/kpprox$ 0.01 to 1m

across the gravity/capillary crossover

high speed Fourier transform profilometry: space and time resolved measurement

 $\omega = \sqrt{gk + \frac{\gamma}{\rho}k^3}$ water $+TiO_2$ oscillating vessel (0-2 Hz) 70 cm 40 cm

water surface waves around the gravity/capillary crossover

Experimental observation of Weak Turbulence: space and time resolved measurement

Spectral analysis

influence of magnitude of forcing

wave resonances ?

Resonance investigation

50 40 2D solutions \mathbf{k}_3 \mathbf{k}_2 ω^{min} / 2π (Hz) 00 30 \mathbf{k}_1 1D solutions 10 \mathbf{k}_3 \mathbf{k}_2 \mathbf{k}_1 0∟ 0 10 20 30 40 50 ω₂/ 2π (Hz)

Theoretical exact solutions

3-wave resonant interaction

$$\omega_1 = \omega_2 + \omega_3$$
$$\mathbf{k}_1 = \mathbf{k}_2 + \mathbf{k}_3$$

Linear dispersion relation

$$\omega = \sqrt{gk + \frac{\gamma}{\rho}k^3}$$

Resonance investigation

Theoretical exact solutions

3 wave coherence

$$C(\omega_1, \omega_2, \omega_3) = |\langle \langle v^*(\omega_1)v(\omega_2)v(\omega_3) \rangle \rangle|$$

Resonance investigation

Theoretical exact solutions

Resonance investigation (weak forcing)

Bi-coherence

 $B(\omega_2,\omega_3)$

Aubourg & Mordant, PRL 2015

Resonance investigation:

-1.5

-2

-2.5

role of approximate resonances: case of 1D interactions

3-wave quasi resonant interactions (1D case):

 $k_1 \pm \delta k = k_2 + k_3$ $\omega_1 = \omega_2 + \omega_3$

Resonance investigation (weak forcing)

Perspectives

gravity surface waves: think bigger...

Coriolis facility: 13 m in diameter

surface waves or bilayer case (clear/salted water, no capillarity)

gravity surface waves: think bigger...

with Q. Aubourg, A. Campagne, J. Sommeria & S. Viboud

Observation of nonlinear waves interactions

on Surface gravity waves and Internal gravity waves

Coriolis Platform, LEGI, Grenoble, France

movie by Q. Aubourg

1D gravity surface waves (I. Redor)

1D case: 36 m linear wave flume

strongly non linear wave turbulence in a vibrated plate: emergence of singularities

emergence of **coherent structures** (singularities) and **intermittency** coexisting with weak turbulence

influence of structures on energy transfer ?

the vibrating plate: a "simple" but rich model for wave turbulence !

Miquel, Alexakis, Josserand & Mordant, Phys. Rev. Lett. 2013

Wave Turbulence of Internal waves ? (with P. Augier, A. Campagne, B. Voisin & J. Sommeria)

 generate turbulence in stratified fluid or stratified+rotating fluid at both low Fr number et high Re number

compare:

- forcing with waves (oscillating bodies or topography)
- forcing with vortices (moving cylinders)

Coriolis facility in Grenoble (fully reconstructed in 2014) supervisor: J. Sommeria

13 m in diameter 1m deep hydraulic scheme for salt/alcohol stratification rotation down to 10 s period

> 3D, 3 components time resolved PIV + Lagrangian particle tracking

WATU

European Research Council Established by the European Commission