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Wave turbulence ?



Weak Turbulence Theory 

main hypotheses of weak turbulence theory:  
• large system 
• weak non linearity: time scale separation Tlinear << Tnonlinear 

!
➥ statistical theory for the slow time evolution of statistical quantities (PDF, Fourier spectrum…)

Weak Turbulence formalism

dynamical non linear

wave equations statistical theory

see S. Nazarenko, Wave Turbulence, Springer 2011



!
example: thin elastic plate (flexion waves)

Moreover, while there is often a lack of direct observa-
tions of weak turbulence predictions, we exhibit numeri-
cally relaxation to equilibrium and energy cascade for the
plate dynamics, confirming the scenario presented above.
The plate dynamics is illustrated in Fig. 1 for an isolated
system where the plate deformations are shown at initial
time and after a long evolution.

Theory.—The starting point is the dynamical version of
the Föppl–von Kármán equations [18] for the plate defor-
mation !!x; y; t" and the stress function "!x; y; t":
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where h is the thickness of the elastic sheet. The material
has a mass density #, a Young’s modulus E, and a Poisson
ratio $. ! # @xx % @yy is the usual Laplacian and the
bracket f&; &g is defined by ff; gg ' fxxgyy % fyygxx $
2fxygxy, which is an exact divergence, so Eq. (1) preserves
the momentum of the center of mass, namely
@tt

R
!!x; y; t"dxdy # 0. The first term on the right-hand

side of (1) represents the bending while the second one
f! ;"g, together with Eq. (2), represents the stretching [19].

Despite the complexity of Eqs. (1) and (2) the system
presents a Hamiltonian structure that is straightforward in
Fourier space. Defining the Fourier transforms as !k!t" #
1
2%

R
!!x; t"eik&xd2x (with !k # !(

$k), then one gets from
Eq. (2): "k!t" # $ E

2jkj4 f! ; !gk, where f! ; !gk is the Fourier
transform of f! ; !g. The final equation is a nonlinear oscil-
lator with the usual ballistic dispersion relation of bending
waves !k # hcjkj2 # hck2 [c #

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
E=12!1$ $2"#

p
has

the dimension of a velocity] [16,18]:
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d2k2d2k3d2k4. The Hamiltonian structure becomes evi-
dent if we define as canonical variables the deformation
!k!t" and the momentum pk!t" # #@t!k!t". Finally, the
canonical transformation !k # Xk!!

2
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p
Xk
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$k" with Xk # 1!!!!!!!
!k#

p allows us to write the

wave equation in a diagonalized form: dAk
dt % i!kAk #

iN3!Ak", where N3!&" is the cubic nonlinear term.
Weak turbulence theory.—This nonlinear oscillator has

two distinct time scales, the rapid oscillation i!kAk and the
weak nonlinearity: iN3!Ak". Then, following the approach
of [4], one changes Ak # ak!t"e$i!kt which removes the
rapid linear oscillating term:
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where we define ask with the two possible choices s # % or
$ relative to the propagation direction, such that a%k ' ak
while a$k ' a($k. The interaction term reads: Jk1;k2;k3;k4 #
1
6Xk1Xk2Xk3Xk4P 234Vk1;k2;k3;k4 , where P 234 is the sum over
the six possible permutations between 2, 3, and 4. The next
step consists of writing a hierarchy of linear equations for
the averaged moments: has1k1a

s2
k2
i, has1k1a

s2
k2
as3k3a

s4
k4
i, etc. A

multiscale analysis provides a natural asymptotic closure
for higher moments: the fast oscillations drive the system
close to Gaussian statistics and higher moments are written
in terms of the second order moment: hak1a(k2i #
nk1&

!2"!k1 % k2", where nk is called the wave spectrum.
The wave spectrum thus satisfies a Boltzmann-type

kinetic equation describing a slow exchange of energy
from one mode to another through four waves resonance:
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As for the usual Boltzmann equation, Eq. (4) conserves
‘‘formally’’ [20] the total momentum per unit area P #
h
R
knk!t"d2k and the kinetic energy per unit area E #

h
R
!knk!t"d2k, and exhibits an H theorem: let S!t" #R

ln!nk"d2k be the nonequilibrium entropy, then dS=dt *
0, for increasing time. However, despite the four waves
interaction type kinetic Eq. (4), the ‘‘wave action’’ N #R
nk!t"d2k is not conserved. The kinetic Eq. (4) describes

thus an irreversible evolution of the wave spectrum towards
the Rayleigh-Jeans equilibrium distribution which reads,
when P # 0:

 neqk # T=!k; (5)

here T is called, by analogy with thermodynamics, the
‘‘temperature’’ (with units of energy/length, i.e., a force),
which is naturally related to the initial energy by E0 #
h
R
!kneqd2k # hT

R
d2k. The quantity

R
d2k is the num-

ber of degrees of freedom per unit surface. Therefore each
degree of freedom takes the same energy: hT. Naturally,

 0
 10

 20
 30

 10

 20

 30

-8

-4

 0

 4

 8

x

y

ζ  (x,y)

 0
 10

 20
 30

 10

 20

 30

-8

-4

 0

 4

 8
ζ  (x,y)

x

y

FIG. 1. Zoom over a portion of the surface plate deflection
!!x; y". The left-hand image is the initial condition while the
right-hand one represents a long-time evolution of the plate.
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Moreover, while there is often a lack of direct observa-
tions of weak turbulence predictions, we exhibit numeri-
cally relaxation to equilibrium and energy cascade for the
plate dynamics, confirming the scenario presented above.
The plate dynamics is illustrated in Fig. 1 for an isolated
system where the plate deformations are shown at initial
time and after a long evolution.
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FIG. 1. Zoom over a portion of the surface plate deflection
!!x; y". The left-hand image is the initial condition while the
right-hand one represents a long-time evolution of the plate.
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deformation from flat plate

Moreover, while there is often a lack of direct observa-
tions of weak turbulence predictions, we exhibit numeri-
cally relaxation to equilibrium and energy cascade for the
plate dynamics, confirming the scenario presented above.
The plate dynamics is illustrated in Fig. 1 for an isolated
system where the plate deformations are shown at initial
time and after a long evolution.

Theory.—The starting point is the dynamical version of
the Föppl–von Kármán equations [18] for the plate defor-
mation !!x; y; t" and the stress function "!x; y; t":

 #
@2!
@t2

# $ Eh2

12!1$ $2"!
2! % f! ;"g; (1)

 

1

E
!2" # $ 1

2
f! ; !g; (2)

where h is the thickness of the elastic sheet. The material
has a mass density #, a Young’s modulus E, and a Poisson
ratio $. ! # @xx % @yy is the usual Laplacian and the
bracket f&; &g is defined by ff; gg ' fxxgyy % fyygxx $
2fxygxy, which is an exact divergence, so Eq. (1) preserves
the momentum of the center of mass, namely
@tt

R
!!x; y; t"dxdy # 0. The first term on the right-hand

side of (1) represents the bending while the second one
f! ;"g, together with Eq. (2), represents the stretching [19].

Despite the complexity of Eqs. (1) and (2) the system
presents a Hamiltonian structure that is straightforward in
Fourier space. Defining the Fourier transforms as !k!t" #
1
2%

R
!!x; t"eik&xd2x (with !k # !(

$k), then one gets from
Eq. (2): "k!t" # $ E

2jkj4 f! ; !gk, where f! ; !gk is the Fourier
transform of f! ; !g. The final equation is a nonlinear oscil-
lator with the usual ballistic dispersion relation of bending
waves !k # hcjkj2 # hck2 [c #

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
E=12!1$ $2"#

p
has

the dimension of a velocity] [16,18]:

 #
@2!k
@t2

# $ Eh2k4

12!1$ $2" !k $
Z

V$k;k2;k3;k4!k2!k3!k4&
!2"!k

$ k2 $ k3 $ k4"d2k2;3;4;

where V12;34 # E
2!2%"2

jk1)k2j2jk3)k4j2
jk1%k2j4 and d2k2;3;4 '

d2k2d2k3d2k4. The Hamiltonian structure becomes evi-
dent if we define as canonical variables the deformation
!k!t" and the momentum pk!t" # #@t!k!t". Finally, the
canonical transformation !k # Xk!!

2
p !Ak % A(

$k" and pk #

$ i!!
2

p
Xk
!Ak $ A(

$k" with Xk # 1!!!!!!!
!k#

p allows us to write the

wave equation in a diagonalized form: dAk
dt % i!kAk #

iN3!Ak", where N3!&" is the cubic nonlinear term.
Weak turbulence theory.—This nonlinear oscillator has

two distinct time scales, the rapid oscillation i!kAk and the
weak nonlinearity: iN3!Ak". Then, following the approach
of [4], one changes Ak # ak!t"e$i!kt which removes the
rapid linear oscillating term:
 

dask
dt

# $is
X
s1s2s3

Z
J$kk1k2k3e

it!s!k$s1!k1
$s2!k2

$s3!k3
"

) as11 a
s2
2 a

s3
3 &!2"!k1 % k2 % k3 $ k"d2k123; (3)

where we define ask with the two possible choices s # % or
$ relative to the propagation direction, such that a%k ' ak
while a$k ' a($k. The interaction term reads: Jk1;k2;k3;k4 #
1
6Xk1Xk2Xk3Xk4P 234Vk1;k2;k3;k4 , where P 234 is the sum over
the six possible permutations between 2, 3, and 4. The next
step consists of writing a hierarchy of linear equations for
the averaged moments: has1k1a

s2
k2
i, has1k1a

s2
k2
as3k3a

s4
k4
i, etc. A

multiscale analysis provides a natural asymptotic closure
for higher moments: the fast oscillations drive the system
close to Gaussian statistics and higher moments are written
in terms of the second order moment: hak1a(k2i #
nk1&

!2"!k1 % k2", where nk is called the wave spectrum.
The wave spectrum thus satisfies a Boltzmann-type

kinetic equation describing a slow exchange of energy
from one mode to another through four waves resonance:

 

dnp1

dt
# 12%

Z
jJp1k1k2k3 j2

X
s1s2s3

nk1nk2nk3np1

"
1

np1

% s1
nk1

% s2
nk2

% s3
nk3

#
&!!p1

% s1!k1 % s2!k2 % s3!k3"

) &!2"!p1 % s1k1 % s2k2 % s3k3"d2k123: (4)

As for the usual Boltzmann equation, Eq. (4) conserves
‘‘formally’’ [20] the total momentum per unit area P #
h
R
knk!t"d2k and the kinetic energy per unit area E #

h
R
!knk!t"d2k, and exhibits an H theorem: let S!t" #R

ln!nk"d2k be the nonequilibrium entropy, then dS=dt *
0, for increasing time. However, despite the four waves
interaction type kinetic Eq. (4), the ‘‘wave action’’ N #R
nk!t"d2k is not conserved. The kinetic Eq. (4) describes

thus an irreversible evolution of the wave spectrum towards
the Rayleigh-Jeans equilibrium distribution which reads,
when P # 0:

 neqk # T=!k; (5)

here T is called, by analogy with thermodynamics, the
‘‘temperature’’ (with units of energy/length, i.e., a force),
which is naturally related to the initial energy by E0 #
h
R
!kneqd2k # hT

R
d2k. The quantity

R
d2k is the num-

ber of degrees of freedom per unit surface. Therefore each
degree of freedom takes the same energy: hT. Naturally,

 0
 10

 20
 30

 10

 20

 30

-8

-4

 0

 4

 8

x

y

ζ  (x,y)

 0
 10

 20
 30

 10

 20

 30

-8

-4

 0

 4

 8
ζ  (x,y)

x

y

FIG. 1. Zoom over a portion of the surface plate deflection
!!x; y". The left-hand image is the initial condition while the
right-hand one represents a long-time evolution of the plate.
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Airy stress function
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FIG. 1. Zoom over a portion of the surface plate deflection
!!x; y". The left-hand image is the initial condition while the
right-hand one represents a long-time evolution of the plate.
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h plate thickness 
E Young’s modulus 
σ Poisson’s coefficient 
ρ specific mass

• dynamical nonlinear wave equation (Föppl - Von Karman eqs)2 THE AUTHOR
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• weak turbulence theory ➙ evolution equation for the wave action spectrum (kinetic equation)

energy exchanges through wave resonances

G. Düring, S. Rica, C. Josserand, PRL 97 (2006)

• stationary solutions ➙ Kolmogorov-Zakharov spectrum

2

less steel plate, of size 2 × 1 m2 and h = 0.4 mm thick,
held vertically on a short side (Fig. 1). A electromag-
netic vibrator type V406 from LDS is fixed at a point
located 40 cm from the plate bottom. It can move nor-
mally to the plate to excite bending waves. The typical
forcing excitation is either sinusoidal (typically at 30 Hz)
or a low frequency noise (of restricted bandwidth up to
15 Hz, for example). The forcing is recorded by a force
probe of type NTC from FGP Sensors and an accelerom-
eter 4393V from Brüel & Kjær. The motion of the plate
is recorded by using a vibrometer type OFV-552 from
Polytec. The vibrometer is equipped with a two-headed
sensor that enables us to record the normal velocity of
the plate at one point or normal velocity differences be-
tween two points. The measurement points are close to
the center of the plate or in the upper half of the plate
so that the motion of the plate is not directly affected by
the vibrator.

This kind of thin elastic plate is known to develop
bending waves following the wave equation [3, 5]

h2E

12(1 − σ2)
∆2ζ + ρ∂ttζ = {ζ, χ} (1)

1

E
∆2χ = −

1

2
{ζ, ζ} (2)

where ζ is the normal displacement and E ≃ 2× 1011Pa
is the Young modulus, σ ≃ 0.3 is the Poisson ratio,
and ρ ≃ 8000 kg.m−3 is the specific mass (values are
typical for stainless steel). ∆ is the Laplacian, and
{a, b} = ∂xxa ∂yyb + ∂yya ∂xxb − 2∂xya ∂xyb. χ is the
stress function and is related to the longitudinal defor-
mation of the plate [5]. The linear dispersion relation
is

ω =

√

Eh2

12(1 − σ2)ρ
k2 . (3)

For large amplitudes, the wave equation exhibits cubic
nonlinearities. This nonlinear equation is believed to lead
to wave turbulence [3] with the following predicted wide-
band spectrum for the displacement ζ:

Eζ(k) = C
P 1/3

[12(1− σ2)]1/6

ln1/3(k⋆/k)
√

E/ρk3
, (4)

where P is the energy flux per unit mass (here we use the
definition of Connaughton et al. [6]), C a dimensionless
number, and k⋆ is an ad hoc cutoff wave number. Us-
ing (3) to change variables from k to ω, the theoretical
prediction for the velocity power spectrum is then

Ev(ω) = C ′
hP 1/3

[12(1− σ2)]2/3
ln1/3(ω⋆/ω) , (5)

where ω⋆ = ω(k⋆) and C′ is a number.
Following Connaughton et al. [6], another prediction,

based on dimensional analysis, can be derived: Starting

from the linear dispersion relation of the form ω = λkα,
using the order of the nonlinearity to get the scaling in P
and assuming power laws, one predicts a velocity power
spectrum

Ev(ω) ∼ P 1/3

(

Eh2

12(1 − σ2)ρ

)1/4

ω−1/2 (6)

for four-wave interactions (here λ =
√

Eh2

12(1−σ2)ρ).

In order to get a more general prediction based on di-
mensional analysis, one should note that the Young mod-
ulus appears in the linear part of the wave equation (1)
combined with h and ρ but also alone in the nonlinear
part (2). This is different from the case of surface gravity
waves for example, for which no additional dimensional
parameters appear in the nonlinear part, due to a differ-
ent physical nature of the nonlinearity. Here, dimensional
analysis should use E, alone and not combined in λ with
h and ρ. In this way, with the parameters P , E, ρ and
h (discarding σ as without dimension), one predicts that
the velocity power spectrum should behave like:

Ev(ω) = h

√

E

ρ
g

(

P 1/3

hω
, P

( ρ

E

)3/2
)

, (7)

where g is an unknown function. The theoretical pre-
diction (5) follows the dimensional prediction (7) with
g(a, b) ∝ (b ln a)1/3. One would then expect the cutoff
frequency to follow

ω⋆ ∝ P 1/3/h. (8)

In [3], this high frequency cutoff ω⋆ had to be introduced
in order to ensure that a non-zero energy flux exists in
the out-of-equilibrium case. In the dimensional analysis,
it appears naturally from the nonlinear conservative wave
equation. Note that in the case of surface gravity waves,
one has to invoke dissipation (or the crossover to capillary
waves) to introduce a high-frequency cutoff in the wave
spectrum.

In our case, P can be estimated experimentally. The
mechanical power P transferred to the plate by the vibra-
tor can be estimated by P = ⟨FU⟩, where F is the force
applied to the plate and U the velocity of the plate at the
vibrator position. For a given plate, P is proportional to
P .

Figure 2 displays the velocity power spectrum mea-
sured at a point near the center of the plate. At the
highest frequencies, the spectrum decays exponentially
(thick dashed line). A cutoff frequency can then be es-
timated by an exponential fit of the spectrum in this
high-frequency region. As seen in the inset, f⋆ varies as
P 1/3 in agreement with (8). This suggests that the ob-
served cutoff may not be due to any dissipative process
but rather to the nonlinear dynamics of the waves (al-
though some dissipative process eventually absorbs the
energy flux).

P : energy  
dissipation rate



N. Mordant WAve TUrbulence

wave turbulence

very diverse phenomenology
• weak turbulence!
• strong wave turbulence: structures!
! solitons, singularities!
• multiple cascades in scales !
! (energy, action, momentum,…)!
! Bose-Einstein condensate!
• coexistence with Fluid Turbulence!
• finite size effects

 ➥ need for experimental input and for deeper statistical analysis

• geophysics - oceanic/atmospheric waves!
➥ climate modeling, wave forecasting !

• plasmas - confinement issues in ITER, solar winds!
• non linear optics - semiconductor/fiber lasers!
• condensed matter - formation of BEC, !

  superfluid turbulence

wide range of applications: !
not restricted to fluids !

4/13



	

Linear	dispersion	relation	:	

Probe	the	fundamental	nonlinear	coupling	for	water	waves

Gravity-capillary	surface	water	waves

Gravity Capillary

Frequency
15Hz

our	experiment:

across	the	gravity/capillary	crossover	



high speed Fourier transform profilometry: 
	 	 	 	 	 	 	 	 space and time resolved measurement

40 cm
70 cm

water +TiO2

water surface waves around the gravity/capillary crossover

oscillating vessel  
(0-2 Hz)

!1 = !2 + !3

k1 = k2 + k3

! =

r
gk +

�

⇢
k3

!/2⇡

� = 2⇡/k

1

FTP	profilometry:	Maurel	et	al.	Applied	optics	2009	
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Power	spectrum

Linear	dispersion	relation

Spectral	analysis
Velocity	field

Fourier	transform	 
in	space	and	time

Space-time	power	spectrum

Forcing	[0:2]Hz

Direct	cascade

Angular	integration
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wave resonances ?



Resonance	investigation

1D	solutions

Linear	dispersion	relation

Theoretical	exact	solutions

2D	solutions

3-wave	resonant	interaction



Resonance	investigation

Fourier	transform	 
in	time

Velocity	field

3rd	order	correlation	in	frequency

Bi-coherence

for	resonant	interactions

Theoretical	exact	solutions

1D	solution

2D	solution
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Resonance	investigation
Theoretical	exact	solutions

1D	solution

2D	solution



Resonance	investigation	(weak	forcing)

3-waves	processes	are	present

“weak”	correlations	near	5%

Aubourg	&	Mordant,	PRL	20151D	solution

Bi-coherence

1D	coupling	is	dominant



Resonance	investigation:	
3-wave	correlations		
in	wavenumber	space

4	dimensions	space…

is	given

➥ dominant	correlations		
for	almost	aligned	wavevectors

exact	resonances
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role of approximate resonances: case of 1D interactions
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deformation of the spectrum seems to be related with the amplitude of the forcing and is

also consistent with observation by Berhanu et al. 23 who interpret this shift as being due

to nonlinear corrections due to large amplitude low frequency modes.

Thus our observations confirm the existence of two distinct regimes (weak and strong)

and the following part is devoted to a detailed study of 3-wave interaction that is supposed

to be at the core of the energy cascade.

IV. 3-WAVE RESONANCES

The most natural way to investigate non linear coupling among N waves is the use of

N -order correlations such as

⟨a1a2...apa∗p+1...a
∗

N ⟩ (6)

where ai is the wave amplitude in frequency space ai(ωi) or in wavevector space ai(ki) (.∗ is

the complex conjugation). This sort of generic correlations probes resonances ω1+ω2+ ...+

ωp = ωp+1+ ...+ωN or k1 +k2 + ...+kp = kp+1 + ....+ kN respectively. In the following we

will investigate the 3-wave case N = 3 both in frequency and wavenumber space in order to

get detailed information on the geometry of the wave interactions.

1. Theoretical analysis

The order of non linear wave interaction depends on the order of the non linearity and

the possibility or not to have solutions for the resonance equations. McGoldrick and then

Simmons 8,9 have investigated the 3-waves resonant solutions in gravity-capillary regime

satisfying these two equations

k1 = k2 + k3 (7)

ω1 = ω2 + ω3 (8)

Figure 5(a) displays a full space-time representation of the resonant solutions for a given

wave [k2,ω2]. The red surface shows the linear dispersion relation (3) and marks the point

[k1,ω1]. As ω1 = ω2 + ω3, the green surface displays the dispersion relation shifted to start

from the point [k2,ω2] and thus marks the points [k2 + k3,ω2 + ω3]. Thus the resonant

9

deformation of the spectrum seems to be related with the amplitude of the forcing and is

also consistent with observation by Berhanu et al. 23 who interpret this shift as being due

to nonlinear corrections due to large amplitude low frequency modes.

Thus our observations confirm the existence of two distinct regimes (weak and strong)

and the following part is devoted to a detailed study of 3-wave interaction that is supposed

to be at the core of the energy cascade.

IV. 3-WAVE RESONANCES

The most natural way to investigate non linear coupling among N waves is the use of

N -order correlations such as

⟨a1a2...apa∗p+1...a
∗

N ⟩ (6)

where ai is the wave amplitude in frequency space ai(ωi) or in wavevector space ai(ki) (.∗ is

the complex conjugation). This sort of generic correlations probes resonances ω1+ω2+ ...+

ωp = ωp+1+ ...+ωN or k1 +k2 + ...+kp = kp+1 + ....+ kN respectively. In the following we

will investigate the 3-wave case N = 3 both in frequency and wavenumber space in order to

get detailed information on the geometry of the wave interactions.

1. Theoretical analysis

The order of non linear wave interaction depends on the order of the non linearity and

the possibility or not to have solutions for the resonance equations. McGoldrick and then

Simmons 8,9 have investigated the 3-waves resonant solutions in gravity-capillary regime

satisfying these two equations

k1 = k2 + k3 (7)

ω1 = ω2 + ω3 (8)

Figure 5(a) displays a full space-time representation of the resonant solutions for a given

wave [k2,ω2]. The red surface shows the linear dispersion relation (3) and marks the point

[k1,ω1]. As ω1 = ω2 + ω3, the green surface displays the dispersion relation shifted to start

from the point [k2,ω2] and thus marks the points [k2 + k3,ω2 + ω3]. Thus the resonant

9

deformation of the spectrum seems to be related with the amplitude of the forcing and is

also consistent with observation by Berhanu et al. 23 who interpret this shift as being due

to nonlinear corrections due to large amplitude low frequency modes.

Thus our observations confirm the existence of two distinct regimes (weak and strong)

and the following part is devoted to a detailed study of 3-wave interaction that is supposed

to be at the core of the energy cascade.

IV. 3-WAVE RESONANCES

The most natural way to investigate non linear coupling among N waves is the use of

N -order correlations such as

⟨a1a2...apa∗p+1...a
∗

N ⟩ (6)

where ai is the wave amplitude in frequency space ai(ωi) or in wavevector space ai(ki) (.∗ is

the complex conjugation). This sort of generic correlations probes resonances ω1+ω2+ ...+

ωp = ωp+1+ ...+ωN or k1 +k2 + ...+kp = kp+1 + ....+ kN respectively. In the following we

will investigate the 3-wave case N = 3 both in frequency and wavenumber space in order to

get detailed information on the geometry of the wave interactions.

1. Theoretical analysis

The order of non linear wave interaction depends on the order of the non linearity and

the possibility or not to have solutions for the resonance equations. McGoldrick and then

Simmons 8,9 have investigated the 3-waves resonant solutions in gravity-capillary regime

satisfying these two equations

k1 = k2 + k3 (7)

ω1 = ω2 + ω3 (8)

Figure 5(a) displays a full space-time representation of the resonant solutions for a given

wave [k2,ω2]. The red surface shows the linear dispersion relation (3) and marks the point

[k1,ω1]. As ω1 = ω2 + ω3, the green surface displays the dispersion relation shifted to start

from the point [k2,ω2] and thus marks the points [k2 + k3,ω2 + ω3]. Thus the resonant

9

3-wave	quasi	resonant	interactions	(1D	case):

region of allowed

1D resonances

exact  
resonance

the intersection of the two surfaces marked as the thick black line. Due to the change of

curvature of the dispersion relation, the intersection exists whatever the chosen value for !2.

The resonant solutions show a point of minimum distance to the origin denoted [kmin

3 ,!min

3 ]

which correspond to the special 1D-configuration where the three wave vectors k1, k2 and

k3 are collinear. Figure 5 (b) displays the variation of !min

3 as a function of !2. All

the area above this line permit exact resonant interaction. Thus, we observe the possi-

bility of strong non local coupling: a low frequency gravity wave can interact only with

capillary waves of much higher frequency. As it is well known, we see that pure grav-

ity waves (!/2⇡ < 10 Hz) can not interact with each other through 3-waves interaction.

Fig.5 (c) show !min

1 = !min

3 + !2 as a function of !2 to enhance the presence of a overall

minimum of !1. This special point correspond to the degenerate case of Wilton waves :

!1 = 2!2 = 2!3 = 2⇡ ⇥ 19.6 Hz (fig. 2(c)) (sources). The presence of this instability and

the 3-waves interactions have been verified experimentally by Hammack et al. (source)

As shown above in fig. 4, non-linear e↵ects generate an energy spread around the disper-

sion relation. This may be seen as some uncertainty on the dispersion relation. We want

to investigate the e↵ect of this uncertainty on the resonances. For simplicity we consider

only a unidirectional configuration of the wave vectors and we attribute a constant uncer-

tainty �k to the wave vector equation est-ce que ca serait bcp+complique de prendre

�! = d!

dk

�k ?. In this simplified case, equation (7) can be rewritten as:

k1 ± �k = k2 + k3 (9)

!1 = !2 + !3 (10)

Figure 6 (a) shows the solution for a given wave k2/2⇡ = 40 m�1 in one dimension for

clarity. The exact solution similar as in fig. 5 correspond to the intersection between the black

and the red curve. The non-linear widening �k/2⇡ = 4 m�1 (order of magnitude estimated

from Ev(k,!) of the weak forcing in fig.4) is represented by the two dotted black lines near

the thick black line of the dispersion relation. The range of new solutions permitted by this

non-linear widening are represented by the green lines. Figure 6(b) shows the distance �k

between the black and the red lines as a function of frequency pairs (!2,!3). The white

line in fig. 6(b) is the case of exact resonances for which the distance is zero. The thin

red line limits the area in which the distance �k is smaller than �k in which approximate

11

green region: 

approximate resonances
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Resonance	investigation	(weak	forcing)

3-waves	processes	are	present

“weak”	correlations	near	5%

Aubourg	&	Mordant,	PRL	20151D	solution

Bi-coherence

importance	of	
1D	Approximate	resonances

1D	coupling	is	dominant	
(checked	with	3-wavevector	correlations)

3	wave	interaction	of	gravity	waves	?	
(no	exact	3-wave	resonances)



Perspectives



gravity surface waves: think bigger…

Coriolis facility: 13 m in diameter surface waves or 

bilayer case (clear/salted water, no capillarity)



gravity surface waves: think bigger… !
with Q. Aubourg, A. Campagne, J. Sommeria & S. Viboud

movie by Q. Aubourg



1D gravity surface waves (I. Redor)

1D case: 36 m linear wave flume



strongly non linear wave turbulence in a vibrated plate: 
	 	 	 	 	 	 	 	 	 	 	 	 emergence of singularities

weak forcing strong forcing

Miquel, Alexakis, Josserand & Mordant, Phys. Rev. Lett. 2013

emergence of coherent structures (singularities) 
 	 	 	 	 	 and intermittency coexisting with weak turbulence 

!
influence of structures on energy transfer ?

(DNS)

the vibrating plate: a "simple" but rich model for wave turbulence !



Wave Turbulence of Internal waves ?

 (with P. Augier, A. Campagne, B. Voisin & J. Sommeria)

• generate turbulence in stratified fluid or stratified+rotating fluid 
	 	 	 	 	 	 	 at both low Fr number et high Re number!

compare: 
	 • forcing with waves (oscillating bodies or topography) 
!
	 • forcing with vortices (moving cylinders)

WATU

Coriolis facility in Grenoble 
(fully reconstructed in 2014) 

supervisor: J. Sommeria

13 m in diameter 
1m deep 

hydraulic scheme for salt/alcohol stratification 
rotation down to 10 s period

3D, 3 components 
time resolved PIV 

+ Lagrangian particle tracking


