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Time dependence of correlation functions
in homogeneous and isotropic turbulence



Presentation outline

1 Introduction: why Renormalisation Group ?
(blackboard)

2 Navier-Stokes field theory and extended symmetries
(blackboard)

3 Time-dependence of generic n-point correlation functions
(blackboard)

4 Illustration for the two-point correlation function



Renormalisation Group

perturbative RG approaches

• early works
Forster, Nelson, Stephen PRL 36 (1976),de Dominicis, Martin, PRA 19 (1979),

Fournier, Frisch, PRA 28 (1983), Yakhot, Orszag, PRL 57 (1986) · · ·

• reviews Zhou, Phys. Rep. 488 (2010),

Adzhemyan et al., The Field Theoretic RG in Fully Developed Turbulence, Gordon Breach, 1999

Functional and Non-Perturbative RG

. RG fixed point

for physical forcing

Tomassini, Phys. Lett. B 411 (1997)

Mej́ıa-Monasterio, Muratore-Ginnaneschi, PRE 86 (2012)

LC, Delamotte, Wschebor, PRE 93 (2016)

. time dependence of generic n-point correlation functions

LC, V. Rossetto, N. Wschebor, G. Balarac, Phys. Rev. E 95 (2017)

M. Tarpin, LC, N. Wschebor, Phys. Fluids 30, 055102 (2018)
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Navier-Stokes field theory

forced Navier Stokes equation for incompressible flows

∂~v

∂t
+ ~v · ~∇~v = −1

ρ
~∇p + ν ~∇2~v + ~f

incompressibility condition ~∇ · ~v = 0

~f (~x , t) gaussian stochastic stirring force with variance

〈
fα(t, ~x)fβ(t ′, ~x ′)

〉
= 2δαβδ(t − t ′)NL(|~x − ~x ′|).

with NL peaked at the integral scale (energy injection)



Navier-Stokes field theory

∂~v

∂t
+ ~v · ~∇~v = −1

ρ
~∇p + ν ~∇2~v + ~f with ~∇ · ~v = 0

〈
fα(t, ~x)fβ(t ′, ~x ′)

〉
= 2δαβδ(t − t ′)NL(|~x − ~x ′|).

MSR Janssen de Dominicis formalism: NS field theory

Martin, Siggia, Rose, PRA 8 (1973), Janssen, Z. Phys. B 23 (1976), de Dominicis, J. Phys. Paris 37 (1976)

Z =

∫
D~v D~̄v DpDp̄ e−SNS

SNS =

∫

t,~x

v̄α

[
∂tvα + vβ∂βvα +

1

ρ
∂αp − ν∇2vα

]
+ p̄

[
∂αvα

]

−
∫

t,~x,~x′
v̄α
[
NL(|~x − ~x ′|)

]
v̄α



Navier-Stokes field theory: extended symmetries

time-gauged Galilean invariance: G =

{
~x → ~x + ~ε (t)

~v → ~v − ~̇ε (t)
◦ well-known

time-gauged shift symmetry: R =

{
δv̄α(t, ~x) = ε̄α(t)
δp̄(t, ~x) = vβ(t, ~x)ε̄β(t)

◦ not identified yet!
LC, B. Delamotte, N. Wschebor, Phys. Rev. E 91 (2015)

infinite set of local in time exact Ward identities
for all vertices with one ~q = 0

Γ
(m,n)
α1···αn+m(ω, ~q = ~0; {νi , ~pi}) = Dα1(ω)Γ

(m−1,n)
α2···αn+m({νi , ~pi})

Γ
(m,n)
α1···αm+n(ν1, ~p1, · · · , νm+1, ~q = 0, · · · ) = 0



Non-perturbative Renormalization Group

I based on Wilson idea of the RG

−→ progressive coarse-graining of fluctuations

I exact RG equation for W = lnZ
Polchinski, Nucl. Phys. B 231 (1984), Wetterich, Phys. Lett. B 301 (1993)

∂κWκ =− 1

2

∫

x,y

∂κ[Rκ]ij(x− y)
{ δ2Wκ

δji (x)δjj(y)
+
δWκ

δji (x)

δWκ

δjj(y)

}
,

Rκ : separates fluctuations

ji : sources



Non-perturbative Renormalization Group

I based on Wilson idea of the RG

−→ progressive coarse-graining of fluctuations

I exact RG equation for W = lnZ
Polchinski, Nucl. Phys. B 231 (1984), Wetterich, Phys. Lett. B 301 (1993)

∂κWκ =− 1

2

∫

x,y

∂κ[Rκ]ij(x− y)
{ δ2Wκ

δji (x)δjj(y)
+
δWκ

δji (x)

δWκ

δjj(y)

}
,

exact but infinite hierarchy for flow of connected correlation functions. . .G
(n)


@ G(n)

p1
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. . .
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q

�q
�1
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P
G(k) G(l)⇥
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Non-perturbative Renormalization Group

closed flow equation for all G (n)({ti , ~ki}) in the limit |~ki | � L−1

G (n)

t1, ~k1

∂κ

. . .

= K(2)({ti , ~ki}) G (n) +O(kmax)

K(2)({ti , ~ki}) =
1

3

∫

ω

J(2)(ω)
∑

k,`

~kk · ~k`
ω2

(
e iω(tk−t`) − e iωtk − e−iωt` + 1

)

with the non-linear part hidden in

J(2)(ω) = −
∫
~q

{
2κ∂κNκ(~q) |Gκ(ν, ~q)|2 − 2κ∂κRκ(~q)Cκ(ν, ~q)<Gκ(ν, ~q)

}

M. Tarpin, LC, N. Wschebor, Phys. Fluids 30, 055102 (2018)



Time dependence of n-point correlation functions

solution at the fixed point: universal behaviour

standard critical phenomena: decoupling at large ~ki

K(2)({ti , ~ki})→ 0

solution:

fixed point + decoupling =⇒ scaling form (Family-Wilczek)

with K41 scaling: z = 2/3, dv = −1/3

G (n)
α1...αn

({ti , ~ki}) = k−dG1 H0
α1...αn

({
k

2/3
1 ti , ~ki/k1

})

=⇒ standard scale invariance



Time dependence of n-point correlation functions
Small time delays

solution at the fixed point: non-decoupling !

limit of small time delays ti → 0

K(2)({ti , ~ki})→ K0({ti , ~ki}) = I ∗0
∣∣∑

`

~k`t`
∣∣2

solution (~ρi appropriately rotated wave-vectors):

G (n)
α1...αn

({ti , ~ki}) =

standard scale invariance︷ ︸︸ ︷
ρ−dG1 H0

α1...αn

({
ρ

2/3
1 ti , ρ̂i

})

× exp
(
−α0L

2/3
∣∣∑

`

~k`t`
∣∣2

︸ ︷︷ ︸
violation

+O(~kmaxL)
)

=⇒ breaking of standard scale invariance



Time dependence of n-point correlation functions
Small time delays

solution at the fixed point: non-decoupling !

limit of small time delays ti → 0

K(2)({ti , ~ki})→ K0({ti , ~ki}) = I ∗0
∣∣∑

`

~k`t`
∣∣2

solution (~ρi appropriately rotated wave-vectors):

G (n)
α1...αn

({ti , ~ki}) =

not exact︷ ︸︸ ︷
ρ−dG1 H0

α1...αn

({
ρ

2/3
1 ti , ρ̂i

})

× exp
(
−α0L

2/3
∣∣∑

`

~k`t`
∣∣2

︸ ︷︷ ︸
exact

+O(~kmaxL)
)

=⇒ intermittency corrections at t = 0 not captured at this order



Time dependence of n-point correlation functions
Large time delays

solution at the fixed point: non-decoupling !

limit of large time delays ti →∞

K(2)({ti , ~ki})→ K∞({ti , ~ki}) = I ∗∞
∑

k,`

~kk · ~k`
(
|tk |+ |t`| − |t` − tk |

)

solution (~%i appropriate linear combination of wave-vectors):

G (n)
α1...αn

(t, {~ki}) = %−dG1 H∞α1...αn

(
%

2/3
1 t, {%̂i}

)

× exp
(
−α∞L4/3 |t|

∑

k`

~kk · ~k` +O(~kmaxL)
)

=⇒ breaking of scale invariance, crossover in the time dependence



Two-point correlation function at large wave numbers
Small delays: random sweeping effect

C (t, ~k) =
ε2/3

k11/3
H(ε1/3k2/3t)

︸ ︷︷ ︸
scaling form (z=2/3)

exp
(
− α0(εL)2/3 k2t2

)
︸ ︷︷ ︸

scale dependence (z=1)

random sweeping effect

I early predictions:
Kraichnan (1959), Tennekes (1975)

I frequency energy spectrum

E (ω) ∝ ω−5/3

6= standard scaling theory

with z = 2/3 =⇒ E (ω) ∝ ω−2

Chevillard et al, Phys. Rev. Lett. 95 (2005)

A. DNS results

We first use Eq. !11" to compute R!k ,!" using DNS of
isotropic turbulence. The statistics are averaged over three
realizations of the flow obtained using different initial super-
position of random Fourier modes. The parameters of the
simulations presented in this section are gathered in Table I.
In Fig. 4!a", the coefficient R!k ,!" is plotted for wave num-
bers from k=2 to k=64. As the wave number increases, the
correlation time decreases.

Under Kolmogorov’s assumptions, the eddy-turn-
over time !e!k"#$k3E!k"%−1/2 can be written as !e!k"
#!"1/3k2/3"−1. The sweeping time is simply !s!k"#!u0k"−1.
These scaling laws are plotted in Fig. 4!b" along with the
correlation time !D!k" computed using DNS. As the wave
number increases, the computed values of the correlation
time !D are much closer to the #1 slope than to the #2/3
slope. This confirms that the sweeping time scale is dominant
at high wave numbers, thus at small scales. However, the
conclusions remain unclear concerning the characteristic
time of low wave numbers. These conclusions are similar to
the ones obtained in Refs. 10, 12, and 33.

B. KS results

As presented in Sec. II B 1, one advantage of KS is that
the unsteadiness of the flow is explicitly controlled via the
arbitrary choice of a correlation frequency $n. We investigate
the two main possibilities in the isotropic case, namely, the
straining hypothesis !6" and the sweeping hypothesis !7".
Since $n is considered as a Gaussian variable, one can pilot
its mean and average by choosing specific values for the
parameters % and %!. The input and parameters of KS are
therefore the prescribed spectrum E!k" and the pair of vari-
ables % and %!. In most studies, %!=0, except Ref. 30 in
which %!=% !some papers propose another way to random-
ize $n, see, for example, Ref. 23". % is often assumed to be
close to unity, and a value around 0.5 is often encountered.
The values of % and %! investigated in the present paper can
be found in Table I.

From Eq. !4", two-time correlations are analytically
known in KS. The only source of unsteadiness in this case of
isotropic turbulence is the Gaussian variable $n so that

R!kn,!" = &e−j$n!' = exp!− 1
2$n0

2 !2" , !13"

where $n0=(%2+%!2&n is the rms value of $n. The correla-
tion time !D is then deduced as

!D =
(2'

2$n0
. !14"

In this case, time correlations depend only on the choice of %
and %!, and on the relation &n. Considering the influence of
the standard deviation on the correlation R!k ,!", we set the
value of % at an arbitrarily fixed 0.4 and we focus on the
impact of %!. The arbitrary law &!kn" is here without impor-
tance and the unsteadiness of the velocity field is then de-
rived from the straining hypothesis. Figure 5!a" presents the
time dependent coefficient R!k=16,!" for %! increasing from
0 to 1. The following results concerning the impact of %! are
independent of the wave number, and the specific choice of
k=16 is made without loss of generality.

When %!=0, each Fourier mode at a given k oscillates
with the same frequency, defined by the pseudodispersion
relation $n!kn" $Eq. !6" or Eq. !7"%. Hence, at a given wave
number, no decorrelation is observed even for long time lag
!. These oscillations are not observed in DNS in which nega-
tive loops of R!k ,!" are rare events $as in Fig. 4!a"%. Note in
addition that these oscillations vanish after integration over
all wave numbers in Eq. !11", so that the dependence on the
wave number in Eq. !11" is very important. When %!!0, the
standard deviation of $n is different from zero, the oscilla-
tions are strongly damped, and the correlation R!k ,!" rapidly
goes to zero for large time lag. This is due to the fact that, at
a given wave number, two different Fourier components can
have different frequencies. This observation supports the use
of a Gaussian variable instead of the classical deterministic
law $n!kn".

In Fig. 5!b" the same results are presented after integra-
tion over time to yield !D as a function of %!. For not too
small %!, the computed values of !D agree with the analytical
result of Eq. !14" with $n0=(%2+%!2(k3E!k", k=16, and
%=0.4. The disagreement for low values of %! is due to the

(a)

(b)

FIG. 4. Two-time correlations in isotropic DNS for run DNS 1 in Table I.
!a" Correlation function R!k ,!" as a function of ! for k! $2:64%. !b" Corre-
lation time !D as a function of the wave number k! $2:64%.

015101-5 On space and time correlations Phys. Fluids 22, 015101 "2010#

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  152.77.24.10 On: Tue, 01 Mar
2016 11:23:09

Favier, Godeferd, Cambon,

Phys. Fluids 22 (2010)



Two-point correlation function at large wave numbers
Small delays: random sweeping effect

numerical data

• our simulations
based on pseudo-spectral code

Lagaert, Balarac, Cottet,

J. Comp. Phys. 260 (2014)

• JHTBD
Johns Hopkins TurBulence Database

http://turbulence.pha.jhu.edu/

LC, Rossetto, Wschebor, Balarac, PRE 95 (2017)



Two-point correlation function at large wave numbers
Small delays: random sweeping effect

numerical data

analytical prediction

C (t, k) ∝ exp(−α0k
2t2)

k11/3

LC, Rossetto, Wschebor, Balarac, PRE 95 (2017)



Two-point Correlation function at large wave numbers
Large delays: another breaking of scale invariance

C (t, ~k) =
ε2/3

k11/3
H(ε1/3k2/3t)

︸ ︷︷ ︸
scaling form

exp
(
− α∞ε1/3L4/3 k2|t|

)
︸ ︷︷ ︸

scale dependence

breaking of scale invariance

I different form
than random sweeping

crossover from k2t2 to k2|t|
I hints of this crossover
in experiments
Poulain, Mazellier, Chevillard, Gagne, Baudet,

Eur. Phys. J. B 53 (2006)

turbulent air jet



Time dependence of generic n-point functions

at small time delays

G (n)
α1...αn

({ti , ~ki}) = ρ−dG1 H0
α1...αn

({
ρ

2/3
1 ti , ρ̂i

})

× exp
(
−α0L

2/3
∣∣∑

`

~k`t`
∣∣2 +O(~kmaxL)

)

at large time delays

G (n)
α1...αn

(t, {~ki}) = %−dG1 H∞α1...αn

(
%

2/3
1 t, {%̂i}

)

× exp
(
−α∞L4/3 |t|

∑

k`

~kk · ~k` +O(~kmaxL)
)



Energy spectrum in the dissipative range : theory

universal behaviour of the solution in the dissipative range

kinetic energy spectrum

E (k) ∝ ε2/3

k5/3
F (ηk)

L-1

inertial range

η-1
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kinetic energy spectrum

E (k) ∝ ε2/3

k5/3
F (ηk)

L-1

inertial range

η-1

dissipative
range



Energy spectrum in the dissipative range : theory

universal behaviour of the solution in the dissipative range

regime of k � κ, t → 0, but existence of a finite scale η

assume that scaling variable saturates tk2/3 → ε1/3τK/L
2/3 = (η/L)2/3

kinetic energy spectrum

E (k) ∝ ε2/3

k5/3
exp

[
−µ(ηk)2/3

]

I valid for large k � L−1 but controlled by the fixed point

at very small scales, regularisation by the viscosity
=⇒ simple exponential decay



Energy spectrum in the dissipative range : theory

. several empirical propositions exp[−ckγ ]
with γ = 1/2, 1, 3/2, 4/3, 2,. . .
Monin and Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence (1973)

. early theoretical arguments advocated γ = 1
Kraichnan, Fluid Mech. 5 (1958), Foias et al. Phys. Fluids A 2 (1990) She, Jackson Phys. Fluids A 5 (1992)

. numerical studies

Martinez, Kraichnan et al., J. Plasma Phys. 57 (1997)

Sreenivasan, Antonia, Annu. Rev. Fluid Mech. 29 (1997)

Ishihara, Gotoh, Kaneda, Annu. Rev. Fluid Mech. 41 (2009)

Schumacher, EPL 80 (2007)

Khurshid, Donzis, Sreenivasan, Phys. Rev. Fluids 3 (2018)

two regimes :

{
Near Dissipative Range with exp[−ckγ ], γ < 1
Far Dissipative Range with exp[−bk]



Energy spectrum in the dissipative range : experiments

SPHYNX team, Iramis/SPEC (CEA/CNRS)

von Kármán swirling flow

PhD Brice Saint-Michel (2013)

PIV: particle image velocimetry

c© L. Barbier, CEA



Energy spectrum in the dissipative range : experiments

SPHYNX team, Iramis/SPEC (CEA/CNRS)

von Kármán swirling flow

PhD Brice Saint-Michel (2013)

kinetic energy spectrum

PhD Paul Dubue (in preparation)



Energy spectrum in the dissipative range: experiments

SPHYNX team, Iramis/SPEC (CEA/CNRS)

von Kármán swirling flow

PhD Brice Saint-Michel (2013)

analytical prediction

E (k) ∝ exp(−µ(ηk)2/3)

k5/3

kinetic energy spectrum

Dubue, Kuzzay, Saw, Daviaud, Dubrulle, LC, Rossetto (2017)



Energy spectrum in the dissipative range : experiments

ONERA S1MA wind tunnel Modane (ESWIRP European project)

ONERA wind tunnel facility

c© ONERA conception CMA (P. Toscani)

grid from the ESWIRP project

from ONERA website

M. Bourgoin et al., CEAS Aeronautical Journal (2017)



Energy spectrum in the dissipative range : experiments

ONERA S1MA wind tunnel Modane (ESWIRP European project)

analytical prediction

E (k) ∝ exp(−µk2/3)

k5/3

A. Gorbunova, G. Balarac, M. Bourgoin, LC, N. Mordant, V. Rossetto, in preparation (2019)



Energy spectrum in the dissipative range : DNS

theoretical prediction: E (k) ∝ exp(−µkα)

k5/3
with α = 2/3.

local determination of the exponent: α = d ln
d ln k

∣∣∣d lnE(k)
d ln k

∣∣∣
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Energy spectrum in the dissipative range : experiments

theoretical prediction: E (k) ∝ exp(−µkα)

k5/3
with α = 2/3.

local determination of the exponent: α = d ln
d ln k

∣∣∣d lnE(k)
d ln k

∣∣∣

α = 0.68± 0.09



Summary and perspectives

Summary

closure of NPRG flow equations based on symmetries
exact in the limit of large wave numbers

analytical form of n-point correlation functions

−→ leading time-dependence in 3D
−→ violation of scale invariance

Other results

kinetic energy spectrum in the dissipative range

2D: leading time-dependence of n-point correlation functions

2D: next-to-leading order in the direct cascade
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Summary and perspectives

Summary

closure of NPRG flow equations based on symmetries
exact in the limit of large wave numbers

analytical form of n-point correlation functions

−→ leading time-dependence in 3D
−→ violation of scale invariance

Perspectives

test of NPRG predictions in simulations and experiments

intermittency exponents
−→ calculation of NLO terms at large wave-numbers
−→ passively advected scalars (Kraichnan model)
−→ Burgers’ turbulence
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Thank you for attention !
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