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Sources of motion in planetary fluid layers

• A classical mechanism: thermo-solutal convection

Schae↵er et al. (2017), Code XSHELLS
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Sources of motion in planetary fluid layers

• Gravitational interactions lead to mechanical forcing:

Tides Precession/Nutation Libration

• These forcing can generate intense fluid motions:

Waves (direct forcing)

Ogilvie et al. 2007
Favier et al. 2014

Zonal flows

Morize et al. 2010
Calkins et al. 2012

Turbulence

Noir et al. 2012
Grannan et al. 2014
Favier et al. 2015
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Base flow driven by libration (Hough 1885)

⌦(t) = ⌦0 [1 + ✏ cos(f⌦0t)] ez

Mantle frame rotating at ⌦(t)
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Dimensionless parameters:
• Input Rossby number Ro = ✏�
• Libration frequency f
• Ekman number E = ⌫/(⌦0a2)
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Base flow driven by tides

Orbital frame rotating at n
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Tides

Are these flows stable?

• Boundary instabilities
(centrifugal, Noir et al. (2009))

• Bulk instabilities
(elliptical)
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The harmonic oscillator: inertial waves
Navier-Stokes in the rotating frame:

@u

@t
+ u ·ru + 2⌦⇥ u = �rP + ⌫r2u

Poincaré equation (linear inviscid limit):
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Kerswell (1994)
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Elliptical instability

=+ Elliptical instability

• Parametric sub-harmonic instability
• Extensively studied in the context of strained vortices (Bailly

1986, Pierrehumbert 1986)

• Suggested for geophysical applications by Malkus (1963,1989)

• Reintroduced by Kerswell (1996,2002)

• Observed experimentally in ellipsoidal containers (Le Bars 2015)

) Energy is injected in resonant inertial waves only
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Experimental setups
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An example of libration-driven instability
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Low forcing amplitudes

Equatorial flow in the quasi-steady state

E = 5 ⇥ 10�6 and Ro = 5 ⇥ 10�2 (Roc = 2 ⇥ 10�2)
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Low forcing amplitudes
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• Rise of the background level

• Increase of the mean flow amplitude
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Rise of the geostrophic flow

Equatorial flow in the quasi-steady state

E = 5 ⇥ 10�6 and Ro = 7 ⇥ 10�2 (Roc = 2 ⇥ 10�2)
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Decreasing forcing and dissipation: local approach
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Tidal base flow

� = (a2 � b2)/(a2 + b2) is the ellipticity
� = ⌦ � n is the relative rotation rate

Solution of the Navier-Stokes eqs in the frame rotating at ⌦:

UB = ���

0

@
sin 2�t cos 2�t 0
cos 2�t � sin 2�t 0

0 0 0

1

A

0

@
x
y
z

1

A = A(t)X

Sridhar & Tremaine 1992, Kerswell 2002, Barker 2016
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Local model of tidally-driven elliptic instabilities

Global fluid domain

Lagrangian trajectory of a small fluid patch
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Local model of tidally-driven elliptic instabilities

Global fluid domain

Perturbation equations in the Lagrangian frame moving with the
base flow

@u

@t
+ A(t)x ·ru + A(t)u + u ·ru + 2ez ⇥ u = �r⇧ + Er2u

r · u = 0
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Local model of tidally-driven elliptic instability

• Shearing box approach in a tri-periodic domain (Kelvin mode
decomposition)

{u, ⇧} =
X

k

n
ûk(t), ⇧̂k(t)

o
eik(t)·x
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(� ⇡ 0.1 and E ⇡ 10�4 in global models!)
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ûk(t), ⇧̂k(t)

o
eik(t)·x

• Pseudo-spectral code SNOOPY (G. Lesur, adapted by A. Barker)

• We can now reach � ⇡ 10�3 and E ⇡ 10�7

(� ⇡ 0.1 and E ⇡ 10�4 in global models!)



Introduction Base flows, instabilities, regimes New experiment Local model Conclusion

Outline

Introduction

Base flows, instabilities and parameter regimes

Towards the asymptotic regime in the lab?

Towards asymptotic regimes: the local approach
Rotating case
Stratified case

Conclusions and Perspectives



Introduction Base flows, instabilities, regimes New experiment Local model Conclusion

A typical simulation (� = 0.05, E = 10
�6

)



Introduction Base flows, instabilities, regimes New experiment Local model Conclusion

A typical simulation (� = 0.05, E = 10
�6

)

Geostrophic ! kz = 0

Non-geostrophic ! kz 6= 0
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A typical simulation (� = 0.05, E = 10
�6

)

Spatio-temporal decomposition

u(x, t) ! û(k, !) ! E(✓,!)

Dispersion relation of inertial waves: ! = 2⌦ cos ✓
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What are we missing?

Ekman friction term

�frE
1/2uG

�frE
1/2û(kz=0) in spectral space

• Analogous to 2D, QG and WT in a channel (Scott 2014)

• Asymptotically, the geostrophic flow cannot be forced by
exactly-resonant inertial modes (Greenspan 1969)

• Magnetic field damps geostrophic flows (Barker2013, Guervilly2015)
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Simulations with frictional damping
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Spatial and temporal spectra for the most extreme case
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Spatial and temporal spectra for the most extreme case
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Towards inertial wave turbulence?

• Most of the energy is contained in inertial waves

• Weak nonlinear transfers from the resonant frequency only

• Small finite size e↵ects, very low E

) Weak inertial wave turbulence

Key quantity: |uG|/|u3D|
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Sub-dominant geostrophic mode even without friction...
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Generalization to stratified fluids

• Elliptic instabilities can be generalized to stratified fluids
(Miyazaki&Fukumoto 1992)

• Similar to PSI in stratified tanks (McEwan 1975, Benielli&Sommeria

1996, Bourget 2013) and in the ocean (MacKinnon 2013)

• Resonance mechanism based on internal waves instead of
inertial waves

@2r2uz

@t2
+ N2r2

Huz = 0

! = ±N sin ✓
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Comparison between DNS and Floquet analysis

WKB + Floquet analysis for the linear inviscid limit
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Comparison between DNS and Floquet analysis
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Comparison between DNS and Floquet analysis
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Comparison between DNS and Floquet analysis

0 5 10 15 20
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Nonlinear saturation via DNS
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Spatio-temporal spectra
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Isotropic energy spectra
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Temporal spectra
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Two regimes of saturation
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Towards inertial wave turbulence in planetary cores?

Geophysics
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Conclusion

• Large-scale mechanical forcings can drive small-scale
turbulence in rotating fluids

• Nonlinear saturation can lead to :
• dominant geostrophic flows
• inertial wave cascade

• Which regimes are more relevant to geophysics?

• The generation of geostrophic modes by quasi-resonant
interactions still needs to be clarified
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Perspectives

• More detailed statistical description of the wave turbulence
regime

- Comparison with AQNM (Bellet et al. 2006) and kinetic theory
(Galtier 2003, Gelash et al. 2017, Gamba et al. 2017)

• Can we isolate small-scale inertial waves “surfing” on the
geostrophic mode?

- Systematic study varying the amplitude of the geostrophic
flow

- Critical layers?

• Can these flows drive a dynamo (Mo↵att 1970, Davidson 2014)?



Introduction Base flows, instabilities, regimes New experiment Local model Conclusion

Thank you for your attention!

Generation and maintenance of bulk turbulence by libration-driven elliptical

instability. B. Favier, A.M. Grannan, M.Le Bars & J.M. Aurnou, Phys. Fluids 27
(2015)

Inertial wave turbulence driven by elliptical instability. T. Le Reun, B. Favier, A.

Barker & M. Le Bars, Phys. Rev. Lett. 119 (2017)

Parametric instability and wave turbulence driven by tidal excitation of internal

waves. T. Le Reun, B. Favier & M. Le Bars, J. Fluid Mech. 840 (2018)
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Base flow driven by libration

Time-dependent rotation rate:

⌦(t) = ⌦0 (1 + ✏ cos(f⌦0t)) ez

Vorticity equation in the frame rotating at ⌦(t)

!̇ + u ·r! = [(! + 2⌦) ·r]u + 2⌦̇

Looking for uniform vorticity solution of the form ! = (0, 0, !z)
leads to

Mantle frame rotating at ⌦(t)

Ub = ⌦0✏ sin(⌦0ft)

2

4
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(1 � �)X
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Frame rotating at ⌦0

Ub = ⌦0�✏ sin(⌦0ft)
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Equations and growth rates

Let us decompose the velocity field as

U = Ub + u

The equation for the perturbations is

@tu + Ub ·ru + u ·rUb + u ·ru + 2⌦⇥ u = �rp + ⌫r2u

Rewriting the base flow as Ub = A(t)x, and taking the linear
inviscid limit leads to

@tu + 2⌦⇥ u + rp| {z }
Linear oscillator

= � [A(t)u + A(t)x ·ru]| {z }
Parametric forcing

which is similar to a Mathieu equation.
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Equations and growth rates
The velocity perturbation can be decomposed onto two inertial
modes

u(x) = A1(t) 1(x) + A2(t) 2(x)

where each inertial mode satisfies

2⌦⇥ i + r⇧i = i!i i and r · i = 0

Using the orthogonality relation h i| ji = �ij leads to the
amplitude equations for aj(t) = exp(i!jt)Aj(t)

ȧ1 = h 1|L(t)ui e�i!1t

ȧ2 = h 2|L(t)ui e�i!2t

where L(t) is the parametric forcing operator

L(t)u = A(t)u + A(t)x ·ru with Ub = A(t)x



Introduction Base flows, instabilities, regimes New experiment Local model Conclusion

Equations and growth rates

The interaction coe�cients are non-zero providing that the
following resonance conditions are satisfied
This can readily be done assuming a scale separation between
short wavelength resonant modes and the large-scale base flow
(WKB).

These are inviscid growth rates which are, in practice, corrected
by
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The forcing: base flow with elliptic streamlines

Base flow with elliptic streamlines

⌦

• Strained vortices (Bayly 1986)

• Vortex pair (Pierrehumbert 1986)

• Planetary cores (Malkus 1989)

• u = (Ay,�Bx, 0) (Uniform vorticity A+B and Strain A�B)

• Elliptic instability: resonance of a pair of inertial modes
with the underlying strain field (Kerswell 2002)

• Observed experimentally in ellipsoidal containers (Le Bars 2015)

) Energy is injected in resonant inertial waves only
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An example of tidally-driven instability

animation by animate[2015/03/11]
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Isotropic energy spectra- Rotating case
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Toward wave turbulence driven by tidal forcing?

Stratified case
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Numerical approach

Spectral element code Nek5000
http://nek5000.mcs.anl.gov

• E hexahedral elements

• N3 tensor-product Gauss-Lobatto
Legendre collocation points

• Algebraic convergence with E

• Exponential convergence with N

• 3rd order explicit
Adams-Bashforth scheme for
convective terms

• 3rd order implicit Backward
Di↵erentiation scheme for
di↵usive and pressure terms

animation by animate[2015/03/11]
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From strong to weak turbulence?

Turbulent jet

• Fast and strong
nonlinearities

• Intermittency and coherent
structures

• No complete statistical
theory
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From strong to weak turbulence?

Turbulent jet

• Fast and strong
nonlinearities

• Intermittency and coherent
structures

• No complete statistical
theory

Surface gravity waves

• Slow and weak
nonlinearities

• Only dispersive waves

• Weak turbulence theory
(Zakharov spectrum)

Which regime is more relevant to planetary settings?


