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Dynamo effect
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Larmor 1919: magnetic field perturbations can be amplified
by the flow. - Dynamo instability.



Dynamo instability: self-amplification of B

The rotation of the disk It the disk spins fast enough:
induces electrical current. B grows spontaneously.

o [nstability from which most industrial electricity is produced!
o But can this instability arise in an electrically conducting fluid?



Dynamo experiments

Karlsruhe (2001)
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Dynamo Instability

* Incompressible MHD equations:

B-V)B
ou+ (u-V)u=—-Vp+rVu- (B-V)
PHO
B =V x (uxB)+1nV°B
14
Rm = ot
Ui

dynamo for Rm > Rm..

vV

Pm = —
n

Pm < 1ftor liquid metals.




Kinematic vs dynamic studies

« Kinematic dynamo problem: which flows produce a dynamo?
What is the threshold for dynamo action?

Imposed velocity field
0B =V x (uxB)+nV°B
inear in B Wi linear stability analysis to find Rm..

 Dynamic problem: How does the instability saturate”
Intensity of the resulting magnetic field?

feedback through Lorentz force
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- Kinematic dynamo problem: magnetic field generation
mechanisms.

* alpha-effect mechanism: Roberts flow

* helicity at large scale: Ponomarenko tlow

* omega-effect mechanism: Herzenberg dynamo

* alpha-omega mechanism: Von Karman Sodium dynamo

- Dynamic problem: magnetic field saturation mechanisms.

* Scaling-laws for the saturation of turbulent dynamos
* The predominance of viscosity in DNS
* GGlobal rotation and the magnetostrophic scaling regime



Part |: Kinematic
dynamo problem

* Which flows generate a dynamo?

e How fast need the flow be?

e Can we isolate magnetic field generation mechanisms®?



Roberts tflow: alpha effect
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Ponomarenko dynamo

A large-scale helical flow: Oscillatory dynamo when
Rm is above threshold:
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Riga experiment at large scale.




omega - effect

Shear flows: stretching and tilting of B A
-/ U applied B
iInduced B
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Herzenberg's dynamo: an w™ dynamo mechanism
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VKS: alpha-omega mechanism

Counter-rotating disks:
w-effect

axial B WP azimuthal B

Radial Vortices near the blades:
o -effect
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Summary: magnetic field generation

Qualitatively:
e 2 main magnetic field amplification mechanisms:
«-effect (helicity) and w-eftect (shear).

A dynamo mechanism usually involves two steps:
poloidal B m toroidal B, and toroidal B mp poloidal B.

* |n simple mechanisms, each step is achieved through
alpha or omega eftect:

042, w? and @ -w mechanisms.

Quantitatively:
one needs to solve the linear stability problem to find the
unstable modes of B for a prescribed flow u.



Part Il: dynamic
problem

ow does the instability saturate?
ow intense is the resulting magnetic field?
 What is the influence of global rotation?




Kinematic vs dynamic studies

« Kinematic dynamo problem: which flows produce a dynamo?
What is the threshold for dynamo action?

Imposed velocity field
OB =V x (uxB)+1nV°B
inear in B Wi linear stability analysis to find Rm..

 Dynamic problem: How does the instability saturate”
Intensity of the resulting magnetic field?

feedback through Lorentz force
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Dynamic G.O. Roberts dynamo

{ cos(y/¢)
F=F<{ cos(x/l)
sin(y/¢) — sin(x//)

' when B=0

cos(y/¢)
v=V < cos(z/l)
sin(y/¢) — sin(x/¢)

with V' = F€2/V the flow speed of the purely hydro case (B=0).

Dynamic problem: velocity reduced by the Lorentz tforce

v+ (v-V)v=—-Vp+F -

Reduced alpha effect:
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Saturated state: alpha
reduced to threshold value:
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viscous scaling-law.
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Dynamo saturation

e Dominant balance:

B-V)B
Ou+2Q xu+ (u-V)u=-Vp+rViu- ( )
l / PO
| | B2/
viscous saturation: ou ~
PloV
B2
- turbulent saturation: ou ~ >
prolU
B2
» Coriolis saturation: ou ~ —
JINYAY:

 Magnetic energy at saturation [Pétrélis & Fauve, 2001]:

Pm (Rm — Rm,)

viscous scaling

» B2€2 Rm — Rmc |
002 turbulent scaling
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U magnetostrophic scaling
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EXperimental data
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Rm [figure from Pétrélis et al. (2007)]

Experimentally, the magnetic energy is independent of V.



Experimental vs theoretical data

o Experimentally: the magnetic energy is independent of /.

o Theoretically, all model flows are driven viscously and produce a
dynamo field obeying the viscous scaling regime.

 Numerically: turbulent saturation is not observed in 3D DNS,
even at the lowest achievable Pm. [Oruba & Dormy (2014)]

An important discrepancy between real flows on
=P the one side, and numerical and theoretical
models on the other side.

How to obtain the viscosity-independent scaling regime in a
simple dynamo flow?




I1.1) A numerical approach to
observe the turbulent scaling
regime.

with K. Seshasayanan and A. Alexakis



Bypassing the limitations of 3D DNS

e Rapidly rotating limit: Q‘ >
G.O. Roberts forcing in a rapidly rotating frame <2 € 2l p1h
< N Vs DN R N = N

= The flow becomes exactly 2D (but turbulent) above ¢ 2 € 22bF
7l Q9 A S PI
a critical value of §2. S| 2 S A4 1)

[BG, JFM 2015] 2 < ALV

* Near the dynamo threshold, keep the first unstable mode only:
B(z,y,2,t) = b(x,y, t)eikz + c.c.

Lorentz force quadratic in B | |
~, harmonic 0O, balanced by advective term:

feedback onto the 2D flow.

Oib — (V1 +ike.) x (uxb) +n(Vi — k)b Quasi-2D equations
du+(u-Vi)u=—-Vip—~uy +vViu+f(z,y) | (@symptotically valid).

1
+ — [[(V L +ike,) X b] x b* + c.c.]
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Simulations at Pm = 4.25107°
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o® dynamo mechanism:

B almost uniform in a horizontal plane, with B, > B,.
* Direction of B rotates with z.



Bifurcation curves
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» Extract S from each bifurcation curve and plot S vs Pm.



Transition to turbulent saturation

S~ Pm': viscous
saturation E

S ~ Pm’: turbulent E
saturation ]
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We can reach the Pm of liquid metals.
Very low Pm values for turbulent saturation: not achieved in current 3D DNS!



Summary of part |1.1)

e Rapid rotation + vicinity of dynamo threshold
* reduced set of equations, asymptotically exact.

e Can be simulated at very low Pm.
* reaches the Pm of liquid metals.

* Observation of the turbulent saturation regime in a numerical
solution of the MHD equations.

* This regime sets in at a surprisingly low value of Pm.
= not yet observed in fully 3D DNS.



The role of global rotation

* On standard supercritical dynamos near threshold:
. B?
(B V)Bwﬂxéu » — ~nQ(Rm — Rm,)

PHO PHO  strong-field scaling regime
* On convective dynamos:
32 — Strong-field branch
— 2
S B ~ * Independent of
:‘@ PLLO * « MAC balance »
5 s{,
s e Viscous weak-field branch
5 / B* vy
3 A oo L2
0O Ra, Ra, Ra

e |n state-of-the-art DNS:

MAC balance locally observed in the bulk [Yadav et al. 2016, Schaeffer et al. 2017],
but no clear strong-field scaling regime (B depends on V) [Oruba & Dormy 2014].



1.2) An analytical dynamo that
achieves the magnetostrophic
scaling regime

with K. Seshasayanan



Sweeping and rotation
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New dimensionless numbers standard separation of scales



Governing equations: axial case

magnetic field = B(z,t) 4+ b(z, y, 2, t)

Induction equation:
U(,b+9,b)=(B-V)v+nV~b
0;:B =V x (v xb)+nV*B

Navier-Stokes equation:

U-V)IV+20xv=—-Vp+F A ! (B-V)b+vV3y
PHO

we compute once again the alpha effect coetfticients.



Alpha effect for small viscosity

By £

\/ PHOT]

Alpha effect in terms of the dimensionless magnetic field B, =

‘ ‘ RmV
Kypa;yy | = R4 132
Ty | ¢ L.y I 2
R?2(Ro—1—-1)2 ' ZR.O_l—]_ -1+ R

(for Re > 1)

We can guess the nature of the dynamo bifurcation:

Ro~ ! > 1: the first nonlinearity saturates the instability.
» Supercritical bifurcation.

Ro~ ! < 1: the first nonlinearity does not saturate the instability.
w Subcritical bifurcation.




Full dynamo branch

Look for steady solutions. After integrating in z:

dB, ~Rm*R?B,
4 (Ro L'4 17 T 212 Rf‘:‘z{_l + R2(1 + 1?)
B, Rm”R2B,
dz (h’or‘-‘ E +2R? 5 ? -+ R%(1+ R?)

Multiply the two equations leads to a conserved quantity relating the two
components of B. Substituting into one equation and separating variables:

Ri2 A _ SiVER + R2(M* + R® — 2M*R* + RY)M* where:
£ R2(M4* — 2M2R2)3/2
e (i IE-BLRE [ R M =
2 r2 [M*—2M?R” . [ R*+R? | |
e )f( V RZ+RA \/M4 _OMZ2R2 strong-field scaling
at low Ro.

dynamo branch



Dynamo pranches
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Inertial scaling regime without rotation.
Strong-field scaling regime at low Ro.




Scaling at large distance from threshold??

Precise limit compatible with the scale-separation approach:

%>>1 Rm <1

R \/X > 1 Bt > 1 U const
i — const.
"V NG VAl

Taking the limiting expression of the dynamo branch we get:

e \Without rotation:

2
B_ ~ U? ~ V2é Equipartition scaling.

PHO ¢
 Rapid rotation |Ro| < 1:

B 4 | Strong-field scaling, with 7
0L replaced by an eddy diffusivity.




Summary: magnetic field saturation

* The magnetic field in state-of-the-art geodynamo DNS crucially
depends on viscosity.

* By contrast, experiments exhibit a viscosity-independent scaling.

e Analytically, scalings at low viscosity exemplified by the G.O. Roberts
forcing together with sweeping I/ and global rotation ).

turbulent scaling
without rotation

PMOUQ Q_gz(Rm - Rmc) strong-field scaling

B2/0? Rm — Rm,

Close to threshold:

0 for rapid rotation
2 . . . . .
B2 U“  equipartition scaling without rotation
Far from threshold: —p,uo ~ 1700 strong-field scaling

for rapid rotation



Perspectives and challenges

We have got the right force balance, how to get the right power
balance”

Realistic mechanical forcing”
Convective forcing?

>

Could be addressed using state-of-the-art DNS of
asymptotically reduced set of equations.

Thanks for your attention !

Experiments: the VKS collaboration webpage
http://perso.ens-lyon.fr/nicolas.plihon/VKS/index.php

Saturation at low viscosity:
[Seshasayanan, Gallet, Alexakis, « Transition to turbulent dynamo saturation »,
Phys. Rev. Lett.,, 119, 204503 (2017)]
[Seshasayanan & Gallet, « Dynamo saturation down to vanishing viscosity:
strong-field and inertial scaling regimes. », JFM (2019).]


http://perso.ens-lyon.fr/nicolas.plihon/VKS/index.php

