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Dynamo effect

Larmor 1919: magnetic field perturbations can be amplified 
by the flow.          Dynamo instability.
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Dynamo instability: self-amplification of B

The rotation of the disk 
induces electrical current.

If the disk spins fast enough: 
B grows spontaneously.

• Instability from which most industrial electricity is produced!
• But can this instability arise in an electrically conducting fluid?



Dynamo experiments
Karlsruhe (2001)

Riga (2001)

Von Karman Sodium (2006)



Dynamo instability
• Incompressible MHD equations:

@tu+ (u ·r)u = �rp+ ⌫r2u+
(B ·r)B

⇢µ0

@tB = r⇥ (u⇥B) + ⌘r2B

Rm =
U`

⌘

Pm =
⌫

⌘

dynamo for                    .

           for liquid metals.Pm ⌧ 1

Rm > Rmc



Kinematic vs dynamic studies
• Kinematic dynamo problem: which flows produce a dynamo? 

What is the threshold for dynamo action?

@tB = r⇥ (u⇥B) + ⌘r2B

Imposed velocity field

linear in B         linear stability analysis to find         . Rmc

• Dynamic problem: How does the instability saturate?  
    Intensity of the resulting magnetic field?

feedback through Lorentz force

@tu+ 2⌦⇥ u+ (u ·r)u = �rp+ ⌫r2u+
(B ·r)B

⇢µ0



Outline
Kinematic dynamo problem: magnetic field generation 
mechanisms.

• alpha-effect mechanism: Roberts flow 
• helicity at large scale: Ponomarenko flow 
• omega-effect mechanism: Herzenberg dynamo 
• alpha-omega mechanism: Von Karman Sodium dynamo

Dynamic problem: magnetic field saturation mechanisms.

• Scaling-laws for the saturation of turbulent dynamos 
• The predominance of viscosity in DNS 
• Global rotation and the magnetostrophic scaling regime



Part I: kinematic 
dynamo problem

• Which flows generate a dynamo? 
• How fast need the flow be? 
• Can we isolate magnetic field generation mechanisms?
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Roberts flow: alpha effect
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Ponomarenko dynamo
A large-scale helical flow:

Riga experiment

travelling
wave

Oscillatory dynamo when  
Rm is above threshold:

|B2|

     mechanism operating 
at large scale.
↵2



omega - effect
Shear flows: stretching and tilting of B

u

applied B

induced B !(r)

Herzenberg’s dynamo: an       dynamo mechanism

Experiment: Lowes & Wilkinson

!2

applied B

induced B



axial B azimuthal B

axial Bazimuthal B

Counter-rotating disks:    
!

Radial Vortices near the blades:
↵

-effect

-effect

VKS: alpha-omega mechanism



Summary: magnetic field generation
Qualitatively:
• 2 main magnetic field amplification mechanisms: 

    -effect (helicity) and    -effect (shear). 
• A dynamo mechanism usually involves two steps:  
        poloidal B        toroidal B, and toroidal  B        poloidal B. 
• In simple mechanisms, each step is achieved through 

alpha or omega effect: 
                    ,      and     -     mechanisms. 

Quantitatively:  
one needs to solve the linear stability problem to find the 
unstable modes of B for a prescribed flow u.

↵ !

↵2 !2 ↵ !



Part II: dynamic 
problem

• How does the instability saturate? 
• How intense is the resulting magnetic field? 
• What is the influence of global rotation?



Kinematic vs dynamic studies
• Kinematic dynamo problem: which flows produce a dynamo? 

What is the threshold for dynamo action?

@tB = r⇥ (u⇥B) + ⌘r2B

Imposed velocity field

linear in B         linear stability analysis to find         . Rmc

• Dynamic problem: How does the instability saturate?  
    Intensity of the resulting magnetic field?

feedback through Lorentz force

@tu+ 2⌦⇥ u+ (u ·r)u = �rp+ ⌫r2u+
(B ·r)B

⇢µ0



UΩ

exey
ez

+ -+ -+ -

+- +- +-

+ -+ -+ -

+- +- +-

+- +- +-

+ -+ -+ -

2πℓ

Dynamic G.O. Roberts dynamo
F = F
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V = F `2/⌫with                      the flow speed of the purely hydro case (B=0).

when B=0

Dynamic problem: velocity reduced by the Lorentz force

@tv + (v ·r)v = �rp+ F+
(B ·r)b

⇢µ0

Reduced alpha effect: Saturated state: alpha 
reduced to threshold value:

↵xx;yy = � Rm(`)V

1 +
`2B2

x;y

⇢µ0⌘⌫ viscous scaling-law.

B2`2

⇢µ0⌘2
⇠ Pm (Rm�Rmc)

+⌫�v



Dynamo saturation
• Dominant balance:

viscous saturation: �u ⇠ B2`

⇢µ0⌫

�u ⇠ B2

⇢µ0U
turbulent saturation: 

• Magnetic energy at saturation [Pétrélis & Fauve, 2001]:

�u `

⌘
⇠ Rm�Rmc

@tu+ 2⌦⇥ u+ (u ·r)u = �rp+ ⌫r2u+
(B ·r)B

⇢µ0

Coriolis saturation: �u ⇠ B2

⇢µ0`⌦

B2`2

⇢µ0⌘2
⇠{Pm (Rm�Rmc)

Rm�Rmc
turbulent scaling

viscous scaling

⌦`2

⌘
(Rm�Rmc)

magnetostrophic scaling



Experimental data 

Experimentally, the magnetic energy is independent of   .                       ⌫

Rm

VKS

Riga

Karlsruhe

B2`2

⇢µ0⌘2

[figure from Pétrélis et al. (2007)]



Experimental vs theoretical data 
• Experimentally: the magnetic energy is independent of   .    

• Theoretically, all model flows are driven viscously and produce a 
dynamo field obeying the viscous scaling regime.           

• Numerically: turbulent saturation is not observed in 3D DNS, 
even at the lowest achievable Pm. 

                                           

⌫

An important discrepancy between real flows on 
the one side, and numerical and theoretical 
models on the other side.

[Oruba & Dormy (2014)]

How to obtain the viscosity-independent scaling regime in a 
simple dynamo flow?



II.1) A numerical approach to 
observe the turbulent scaling 

regime.

with K. Seshasayanan and A. Alexakis



Bypassing the limitations of 3D DNS

• Near the dynamo threshold, keep the first unstable mode only:
B(x, y, z, t) = b(x, y, t)eikz + c.c.

Lorentz force quadratic in B
velocity correction negligible for large    . 
harmonic 2, balanced by Coriolis:

harmonic 0, balanced by advective term: 
feedback onto the 2D flow.

⌦

• Rapidly rotating limit:

G.O. Roberts forcing in a rapidly rotating frame 
        The flow becomes exactly 2D (but turbulent) above 
        a critical value of    .      ⌦ [BG, JFM 2015]

⌦

Quasi-2D equations 
(asymptotically valid).



         Simulations at
Vertical vorticity Vertical velocity Magnetic field

•     almost uniform in a horizontal plane, with                 .  
• Direction of     rotates with z.

B B? � Bz

↵2

B

dynamo mechanism:

Pm = 4.25 10�5



Bifurcation curves 

Standard supercritical bifurcation:
⌦
|B|2

↵
`2

⇢µ0⌘2
= S(Pm) (Rm�Rmc)

viscous saturation:
turbulent saturation: S(Pm) ⇠ 1

S(Pm) ⇠ Pm

Extract S from each bifurcation curve and plot S vs Pm.

Pm = 1.4 10�3

Pm = 710�3

Pm = 410�2

Pm = 8.9 10�2



Transition to turbulent saturation

Very low Pm values for turbulent saturation: not achieved in current 3D DNS!
We can reach the Pm of liquid metals.



Summary of part II.1)
• Rapid rotation + vicinity of dynamo threshold 

reduced set of equations, asymptotically exact.

• Can be simulated at very low Pm. 
reaches the Pm of liquid metals.

• Observation of the turbulent saturation regime in a numerical 
solution of the MHD equations.

• This regime sets in at a surprisingly low value of Pm.
not yet observed in fully 3D DNS.



The role of global rotation
• On standard supercritical dynamos near threshold:

(B ·∇)B

ρµ0
∼ Ω× δu

B2

⇢µ0
⇠ ⌘⌦ (Rm�Rmc)

Strong-field scaling regime

2

Viscous weak-field branch

Strong-field branch
B2

⇢µ0
⇠ ⌘⌦

B2

⇢µ0
⇠ ⌫⌘

L2[a
fte

r R
ob

er
ts

 1
97

8] • Independent of  
• « MAC balance »

⌫

• On convective dynamos:

MAC balance locally observed in the bulk [Yadav et al. 2016, Schaeffer et al. 2017],  
but no clear strong-field scaling regime (B depends on   ) [Oruba & Dormy 2014].⌫

• In state-of-the-art DNS:



II.2) An analytical dynamo that 
achieves the magnetostrophic 

scaling regime

with K. Seshasayanan
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Sweeping and rotation

F = F
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⌦ U ⌦ U

Global rotation 
+ « axial » flow

Global rotation 
+ « zonal » flow

Dimensionless parameters:

R =
U`
⌘

Ro =
U
`⌦

Re =
U`
⌫

�

`
� 1Rm =

V `

⌘
⌧ 1

small-scale velocity 
of purely hydro state

standard separation of scales New dimensionless numbers 
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Governing equations: axial case

Navier-Stokes equation:

magnetic field = B(z, t) + b(x, y, z, t)

Induction equation:

@tB = r⇥ hv ⇥ bi+ ⌘r2B

we compute once again the alpha effect coefficients.

⌘r2B



Alpha effect for small viscosity

(for              )Re � 1

We can guess the nature of the dynamo bifurcation:

                     : the first nonlinearity saturates the instability.Ro�1 > 1

                     : the first nonlinearity does not saturate the instability.Ro�1 < 1

Supercritical bifurcation.

Subcritical bifurcation.

Alpha effect in terms of the dimensionless magnetic field

V| |



Full dynamo branch
Look for steady solutions. After integrating in z:

Multiply the two equations leads to a conserved quantity relating the two 
components of B. Substituting into one equation and separating variables: 

where:

M =
maxz Bxp
1�Ro�1

dynamo branch

strong-field scaling 
at low Ro.

| |



Dynamo branches
Ro�1 < 1 Ro�1 > 1
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Strong-field scaling regime at low Ro.
Inertial scaling regime without rotation.



Scaling at large distance from threshold?
Precise limit compatible with the scale-separation approach:

Rm

r
�

`
� 1

Rm ⌧ 1

B`
p
⇢µ0⌘

� 1

�

`
� 1

U
V
p
�/`

= const.

Taking the limiting expression of the dynamo branch we get:

• Without rotation:

• Rapid rotation                 :|Ro| ⌧ 1

Equipartition scaling.

Strong-field scaling, with 
replaced by an eddy diffusivity.

⌘

B2

⇢µ0
⇠ U2 ⇠ V 2�

`

B2

⇢µ0
⇠ ⌦ `U



Summary: magnetic field saturation

• Analytically, scalings at low viscosity exemplified by the G.O. Roberts 
forcing together with sweeping     and global rotation    .U ⌦

• The magnetic field in state-of-the-art geodynamo DNS crucially 
depends on viscosity.

• By contrast, experiments exhibit a viscosity-independent scaling.

Close to threshold:
B2`2

⇢µ0⌘2
⇠{ Rm�Rmc

turbulent scaling 
without rotation

⌦`2

⌘
(Rm�Rmc)

 strong-field scaling 
for rapid rotation

Far from threshold:
B2

⇢µ0
⇠ {U2

U`⌦

equipartition scaling without rotation
strong-field scaling 

for rapid rotation



Perspectives and challenges

• Convective forcing?

• We have got the right force balance, how to get the right power 
balance?

• Realistic mechanical forcing?

Could be addressed using state-of-the-art DNS of 
asymptotically reduced set of equations.

Thanks for your attention !
• Experiments: the VKS collaboration webpage 

        http://perso.ens-lyon.fr/nicolas.plihon/VKS/index.php 

• Saturation at low viscosity: 
[Seshasayanan, Gallet, Alexakis, « Transition to turbulent dynamo saturation », 
Phys. Rev. Lett.,  119, 204503 (2017)] 
[Seshasayanan & Gallet, « Dynamo saturation down to vanishing viscosity: 
strong-field and inertial scaling regimes. », JFM (2019).] 

http://perso.ens-lyon.fr/nicolas.plihon/VKS/index.php

