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Geophysical fluids as two-time-scale systems
Observations. Mid-latitude atmosphere and ocean:

I time scales� 1 day,
I advective time scales, Ta = L/U,
I large-scale motion near geostrophic and hydrostatic

balance.
But fast oscillations, with T . 1 day, abound. (movie)

ANRV365-FL41-14 ARI 12 November 2008 15:9
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Figure 1
Kinetic energy spectral estimates for instruments on a mooring over the Mid-Atlantic Ridge near 27◦N (Fu
et al. 1982). The inertial, principal lunar semidiurnal M2, and diurnal O1, K1 tidal peaks are marked, along
with the percentage of kinetic energy in them and the kinetic energy lying between f and the highest
frequency estimate. Least-squares power-law fits for periods between 10 and 2 h and for periods lying
between 100 and 1000 h are shown. The approximate percentage of energy of the internal wave band lying
in the inertial peak and the M2 peak is noted. In most records, the peak centered near f is broader and higher
than the one appearing at the M2 frequency. When f is close to the diurnal frequency, it is also close to
one-half the frequency of M2, when the parametric subharmonic instability can operate. Some spectra show
the first overtone, 2 M2 of the semidiurnal tide. Instrument at (a) 128 m, (b) 1500 m, and (c) 3900 m (near the
bottom). The geostrophic eddy band is greatly reduced in energy near the bottom, as is the inertial band,
presumably because of the proximity of steep topography. Note the differing axis scales.

(where σ is the radian frequency, and q is an empirical constant), which we call the geostrophic
eddy range. A conspicuous inertial peak exists at σ ≈ f, where f = 2" sin θ is the Coriolis fre-
quency equal to twice Earth’s rotation period " multiplied by the sine of the latitude, θ , and sepa-
rates the geostrophic eddy band from higher-frequency nongeostrophic motions.2 At frequencies
σ > f, there is another approximate power-law band usually identified as internal waves. A number
of other features, especially tidal lines, appear in most of the records (discussed below). In all

2In this review, as in the oceanographic literature, the term inertial waves refers to those waves in a stratified rotating fluid
with radian frequency σ ≈ f. They should be distinguished from the alternative use in rotating nonstratified fluids as waves
with 0 ≤ σ ≤ f (e.g., Chandrasekhar 1968). Here internal waves denote those motions f ≤ σ ≤ N, which include inertial waves
as a special case. Analogous motions exist in fluids for which N ≤ σ ≤ f, including N = 0, but such conditions are almost
nonexistent in the ocean.
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d’Asaro et al 1995 EK vs ω at 27◦N
Phillips & Rintoul 2000; Ferrari & Wunsch 2009

https://www.youtube.com/watch?v=YiwKr8jedJc
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Geophysical fluids as two-time-scale systems
Fast oscillations: inertia-gravity waves, IGWs.

Two restoring mechanisms:
I density stratification, dρ̄/dz < 0,
I earth rotation.

Two key parameters:
I buoyancy (Brunt–Väisälä) frequency

N =
(
−gρ−1

0 dρ̄/dz
)1/2

,

I inertial (Coriolis) frequency

f = 2Ω sin(latitude) .

Take f and N constants with f < N.
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Geophysical fluids as two-time-scale systems

IGWs frequencies,

f ≤ | ±
√

f 2 cos2 θ + N2 sin2 θ| ≤ N ,

i.e. minutes . T . hours,

The time-scale separation estimated by the Rossby number

ε =
U
fL
� 1.

Ocean: ε ∼ 0.01− 0.1; atmosphere: ε ∼ 0.1− 1.
At small scales, near boundaries: ε ∼ 1.
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Balanced flow and IGWs

Boussinesq equations for stratified–rotating fluid:

∂tu + u · ∇u + f z× u = −∇φ+ bz ,

∂tb + u · ∇b + N2w = 0 ,

∇ · u = 0 ,
with

I density ρ(x, t) = ρ0 + ρ̄(z) + ρ̃(x, t),
I buoyancy acceleration b = −gρ̃/ρ0.

Potential-vorticity conservation:

(∂t + u · ∇)q = 0 with q = (f z +∇× u) · (N2z + ∂zb) .
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Balanced flow and IGWs
Linear modes: (u, b, φ) ∝ ei(k·x−ωt) .

Dispersion relation:
I balanced mode (= vortical mode): ω = 0 ,
I IGWs, inertia-gravity waves:

ω = ±
√

f 2k2
v + N2k2

h/|k|

= ±
√

f 2 cos2 θ + N2 sin2 θ

Polarisation relations:
I u · k = 0,
I balanced mode in geostrophic and hydrostatic equilibrium:

f z× uh = ∇hφ, w = 0, ∂zφ = b,

I q = 0 for IGWs.
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Balanced dynamics
Balanced view of geophysical fluids:

I balanced flows and IGWs are weakly coupled because
ε� 1,

I forcing is mainly large-scale and balanced (baroclinic
instability).

Simplest approximation of ocean/atmosphere dynamics:
quasigeostrophic approximation:

I impose geostrophic and hydrostatic balance,

ux + vy = 0, w = 0 ⇒ u = (−ψy, ψx, 0).

I no IGWs (to leading order),

(∂t + u · ∇)q = 0,(
∂2

∂x2 +
∂2

∂y2 +
∂

∂z

(
f 2

N2
∂

∂z

))
ψ = q.
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Balanced dynamics

Geostrophic turbulence

2 quadratic invariants,

I energy E = 1
2

∫ (
ψ2

x + ψ2
y + f 2ψ2

z/N2
)

dx,

I enstrophy Z =
∫

q2 dx.

2 inertial ranges,
I forward enstrophy cascade, E(k) ∝ k−3 for k > kforcing,

I backward energy cascade E(k) ∝ k−5/3 for k < kforcing.

Isotropy in (x, y,Nz/f )-coordinates, i.e. isotropic
(kh, f kv/N)-coordinates. movie, J Weiss

Atmosphere/ocean turbulence:
in forward-enstrophy regime, E(k) ∝ k−3.

http://lcd-www.colorado.edu/jweiss/qg/qgm5.mpg
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Inertia-gravity waves

I about 10% of ocean kinetic
energy is in IGWs,

I 50% kinetic energy is near
inertial: ω ≈ f ,

I forced by winds and tides,
topography. . .

I broad range of spatial
scales.

is used here to correct the NCEP fluxes in both hemi-
spheres. The REMO and corrected NCEP fluxes agree well
at all latitudes (Figure 3e). Since this factor also works well
with NE Pacific NCEP/buoy comparisons (not shown), the
northern fluxes presented here are considered reliable. (The
data-poor high-southern-latitude NCEP winds are less so,
allowing the possibility that the fluxes there are under-
estimated.)

5. Results
5.1. Spatial Maps

[15] Seasonally-averaged spatial maps of the spectral-
solution flux (Figure 4) are qualitatively identical to those
presented in A01, and the reader is referred there for more
details. As in A01, strong western-enhanced, midlatitude
fluxes are observed with maxima in local winter associated
with travelling storms. These midlatitude maxima are evi-
dent, as before, in the zonal-mean profile (Figure 1, green).
[16] The global power input from the wind to inertial

motions is given by the area integral of the panels in Figure 4.
For the period 1989–1995 (considered by WH), the mean
input is 0.47 TW, about 60% higher than A01’s previous
estimate (owing to the larger domain and the incorporation of
near-inertial Ekman motions), but only 70% of theWH value
(see Appendix A).

5.2. 54-Year Record

[17] Since the 1950’s the frequency and intensity of extra-
tropical cyclones has increased in both the northern [Graham

and Diaz, 2001] and southern [Hopkins and Holland, 1997]
Pacific. The effects of these changes on the fluxes are
investigated by computing the wind-work for each year of
the NCEP Reanalysis, from 1948–2001. (The same MLD
climatology is used for all years. However, wind, rather than
MLD, fluctuations dominate the fluxes [A01].) The tropical
input (jlatj < 20!) has remained nearly constant at 0.15 TW
over the 54-year record (Figure 5, blue line), but the
extratropical input has increased by about 40%. The total
has increased about 25% over the 54 years, paralleling
observations of increasing cyclone frequency (gray line),
maximum wind, and wave heights in the North Pacific

Figure 2. Flux transfer functions Re[R(s)] for Z (black),
ZE (red) and ZI (green) for the frequency-independent-r case
(thin) and an r that decays to zero for s < 0.5f (thick).

Figure 3. Annual-mean flux for 1988 from NCEP (a) and
REMO (b). (c) The zonal-mean flux from the NCEP (thin)
and REMO (thick) winds. (d) The ratio at each location
(dots), the zonal mean (thin), a fit (thick), and the factor
used by WH (dashed). (e) Scatter plot of REMO vs.
corrected NCEP fluxes.

Figure 4. The 1992 global distribution of work done by
the wind on near-inertial motions computed using (5) and
incorporating monthly mixed-layer-depth variations. Each
panel is a seasonal average over the months indicated at left.
Ice is indicated in white.

ALFORD: INERTIAL ENERGY-FLUX 6 - 3

Alford et al 2003
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FIGURE 1. Observations from the eastern subtropical North Pacific: (a) observed
transverse and longitudinal kinetic energy and potential energy spectra Ĉu, Ĉv , and Ĉb;
(b) decomposition into rotational and divergent components D and D� from (2.30), (2.31)
and (2.27); here K = (D � kdD /dk)/2 and K� = (D� � kdD�/dk)/2; (c) total observed
energy E and total inertia–gravity wave energy EW from (2.37); (d) ratio D /D� compared
to !⇤ from GM spectrum and M2 value for reference; (e) diagnosis of the balanced
components of the observed spectra Ĉu

V , Ĉv
V , and Ĉb

V ; (f ) diagnosis of the inertia–gravity
wave component of the observed spectra Ĉu

W , Ĉv
W , and Ĉb

W . In (a) a line corresponding to
a k�2 power law has also been added for reference.

Wave–vortex decomposition of one-dimensional ship-track data 1021
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FIGURE 2. Observations from the Gulf Stream region: (a) observed transverse and
longitudinal kinetic energy spectra Ĉu and Ĉv; (b) decomposition into rotational and
divergent components D and D� from (2.30), (2.31) and (2.27); here K = (D �
kdD /dk)/2 and K� = (D� � kdD�/dk)/2; (c) diagnosis of the balanced components of
the observed spectra Ĉu

V and Ĉv
V ; (d) diagnosis of the inertia–gravity wave component of

the observed spectra Ĉu
W and Ĉv

W . In (a) a line corresponding to a k�3 power law has also
been added for reference.

a scale of approximately 20 km. Using (2.30) and (2.31), we perform the Helmholtz
decomposition into rotational and divergent components (figure 1b). In contrast to the
eastern Pacific case, the rotational part D here vastly dominates over a wide range
of scales: only at 20 km does the divergent component D� become comparable to the
rotational component D . Notably, at large scales the true D� becomes close to zero,
but our computed D� actually becomes negative, which is of course unphysical. This
is the numerical robustness issue discussed at the end of § 2.2.

Since no buoyancy data are available, the only way to decompose into a balanced
part and an inertia–gravity wave part is to make an assumption about the frequency
content of the waves. We choose the GM curve to perform the decomposition,
since the GM empirical spectrum is largely based on observations collected nearby
the North Atlantic region considered here. The diagnosed balanced components
Ĉu

V and Ĉv
V show good agreement with the observed spectra Ĉu and Ĉv in the

range 50–200 km (figure 2c). At larger scales, the reconstruction overestimates the

EK vs k/2π in Subtropi-
cal North Pacific and Gulf
Stream

Bühler, Callies & Ferrari 2014
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Inertia-gravity waves

IGWs matter:
I vertical motion⇒ biology,
I vertical shear, instability, turbulence⇒mixing,
I mixing⇒ pollutant dispersion,
I stratification, hence large-scale circulation.

IGWs impact the balanced motion:
I diapycnal mixing, Munk & Wunsch 1998

I energy sink for balanced turbulence.
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Topics of lectures

I. Scattering of IGWs in geostrophic turbulence:
I wave propagation in random flows,
I internal tides,
I atmosphere/ocean energy spectra.

II. IGW feedback:
I ocean energy-dissipation puzzle,
I spontaneous wave generation,
I stimulated wave generation.
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IGW scattering with M Savva & H Kafiabad

What is the generic effect of a turbulent flow on NIWs?

Motivation:
I impact of IGW on large-scale circulation,
I IGWs cascade to small scales and dissipation, Bartello 1995
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IGW scattering with M Savva & H Kafiabad

I impact of flow on internal tides, relevant to satellite
altimetry, Ponte & Klein 2015

Dushaw 2001
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IGW scattering

No spatial scale separation: kLflow = O(1): scattering.

Assume:
I random flow, with homogenous statistics,
I weak flow, Ro� 1:

IGW dispersion� advection, refraction,
I IGWs modulated over scale `� k−1 ∼ Lflow.

Apply theory of wave scattering in random media to obtain an
equation governing the wavenumber-resolving energy density
a(x,k, t) . Rhyzhik, Keller & Papanicolaou 1996
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IGW scattering
Starting point: Boussinesq system linearised about a fixed QG
flow: U = ε1/2∇⊥ψ, ε� 1.
Write governing equations for the perturbation as

∂tφ + L(∇)φ + ε1/2N (x/ε,∇)φ = 0 ,

with specL(∇) = {iω}.
Define the Wigner matrix

W(x,k, t) =

∫
φ(x + εy/2, t)φ∗(x− εy/2, t)eik·y dy

and write its evolution. Solve pertubatively using multiple
scale method: ξ = x/ε:

W(x,k, t) = W0(x,k, t) + ε1/2W1(x, ξ,k, t) + · · ·
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IGW scattering

To leading order,

W0(x,k, t) =
∑
s=±

a±(x,k, t)b(x,k)b∗(x,k),

where b encodes the polarisation relations.

Next order, using ergodicity: kinetic equation

∂a
∂t

+∇kω · ∇xa−∇xω · ∇ka =

∫
R3
σ(k,k′)a(t, x,k′)dk′ − Σ(k)a(t, x,k) ,

I σ(k,k′) is the differential scattering cross-section,
I Σ(k) =

∫
σ(k,k′)dk′, total cross-section.
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IGW scattering

The differential scattering cross section σ(k,k′) encodes the
impact of geostrophic turbulence on IWGs:

σ(k,k′) ∝ δ(ω(k)− ω(k′)) E(k− k′) ,

with E(k) the kinetic energy spectrum of the quasigeostrophic
flow.

I scattering results from
resonant triads: IGWs + flow
= IGWs,

I strength linear in E(k),
I energy transfers restricted to

constant-energy surface.
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IGW scattering: barotropic flow

A model of internal tide propagation assumes barotropic flow:

∂zU = 0.

In a finite-depth ocean, with hydrostatic approximation,
vertical mode decomposition:

u(x, t) =
∑

n

un(x, y, t) sin(nπz/H).

IGW dispersion relation:

ω = ±
√

f 2 + c2
n|kh|2, cn = NH/(nπ)

(cf. shallow-water model).
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IGW scattering: barotropic flow
The scattering cross-section is given by

σ(k,k′) =
2π

ghnω3|k|3
{
|k′ × k|2

[
(ω2+f 2)k·k′−f 2|k|2

]2
+f 2ω2[|k′ × k|2

+ k · k′(|k|2 − k · k′)
]2}

δ(|k| − |k′|)Ê(k′ − k),

using k = kh.

I transfers restricted to |k| = |k′|, ie
ω(k) = ω(k′),

I for isotropic flows, σ = σ(|k|, θ′),
I since |k| is fixed, scattering in

angular coordinate only.
k

l

k

k′

θ′

θ

|k|

|k|
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IGW scattering: barotropic flow

Ignoring spatial dependence, with a(k, t) =
∑

n an(t)einθ , the
kinetic equation reduces to

∂tan = (λn − λ0)an ,

with λn =
∫ π

0 σ(|k|, θ) cos(nθ) dθ.

I describes relaxation of IGWs towards isotropy,
I cf diffusion, (λn − λ0) 7→ −κn2,
I two time scales:

I λ−1
0 , scattering time scale,

I (λ1 − λ0)−1, isotropisation time scale,

I equivalent spatial scales: multiply by cg = ∂kω.
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Tscatter ' 2.7 days, =⇒ Lscatter ' 659km
Tisotropic ' 18 days, =⇒ Lisotropic ' 4334km
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IGW scattering: barotropic flow
With ∂y = 0 and |k| = const, a(x,k, t) = a(x, θ, t) solves

∂ta(x, θ, t)+|cg| cos θ∂xa(x, θ, t) =

∫ 2π

0
σ(θ−θ′)a(x, θ′, t) dθ′−Σa(x, θ, t).
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Wavenumber diffusion
The kinetic equation

∂a
∂t

+∇kω ·∇xa−∇xω ·∇ka =

∫
R3
σ(k,k′)a(t, x,k′)dk′−Σ(k)a(t, x,k),

can be approximated for short IGWs: |k| � |K| .
It reduces to the diffusion equation

∂ta + c · ∇xa = ∇k · (D · ∇ka) ,

where c = ∇kω is the group velocity and

Dij(k) = −1
2

kmkn

∫ ∞
−∞

∂2Πmn

∂xi∂xj
(c(k)s) ds, Πmn(·) = 〈Um(x+·)Un(x)〉

McComas & Bretherton 1977, Müller 1976, 1977, Bal et al 2010

Also directly from WKB (geometric-optics) approximation or
diffusion approximation to continuous-time random walk.
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Wavenumber diffusion

Energy transfers restricted to
ω(k) = const:

I D · c = 0 :,
I results from resonant triads
ω − ω + 0 = 0.

Use spherical coordinates (k, φ, θ) and assume∇xa = ∂φa = 0.

Energy density e(k, t) ∝ k2a(k, t) satisfies

∂te = ∂k
(
Qk5∂k

(
k−2e

))
,

where Q = Q[N, f , θ,Egeo(Kh,Kv)].
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Wavenumber diffusion

Q =
ω sin2 θ

4π3(N2 − f 2)| cos5 θ|

×
∫∫

K2
h/K2

v>tan2 θ

K2
v

Kh

(
cot2 θ − K2

v

K2
h

)1/2

Egeo(Kh,Kv) dKhdKv,
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Wavenumber diffusion
Predictions

I energy confined to one nappe of cone (e.g., upward
propagating IGWs),

I energy spreading on the cone with time scale
(Qk)−1 ∝ k−1Ro−2.

Initial-value problem:
I for e(k, 0) = δ(k− k∗),

e(k, t) = 1
2 k−2
∗

∫ ∞
0

J4(k−1/2λ)J4(k−1/2
∗ λ)e−Qλ2t/4λdλ.

Forced problem:
I for F(k) = δ(k− k∗),

e(k, t) ∝
{

k2 for 0 < k < k∗
k−2 for k > k∗

.

I leads to dependence k−2
h in horizontal wavenumber.
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Numerical simulations
Check predictions against numerical simulations of the 3D
Boussinesq equations

I pseudospectral, 7683 resolution, Bartello 1995, Waite & Bartello 2004

I ∆z = f ∆x/N, consistent with QG scaling and IGWs with
kh/kv ∼ f/N,

I Ro = 0.01 and N/f = 32,
I IGWs added to well-developed QG turbulence.

Geostrophic flow ζ, Ro = ζrms = 0.1f IGW w
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Numerical simulations
Initial-value problem

With peak kflow,h ≈ 4, take k∗h = 16.
Match spectra after a short transient during which diffusion
approximation breaks down.

ω = 2f ω = 3f
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Numerical simulations
Forced problem

Same flow, k∗h = 12.
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Relation to observations
Oceanic energy spectra

Separation between IGWs and geostrophic parts indicate:
I IGWs dominate the submesoscale range (< 20 km);

this includes the Garret–Munk spectrum + larger scales,
I IGWs dominate the entire spectrum in low-energy regions,
I spectrum ∝ k−2

h .Wave–vortex decomposition of one-dimensional ship-track data 1021
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FIGURE 2. Observations from the Gulf Stream region: (a) observed transverse and
longitudinal kinetic energy spectra Ĉu and Ĉv; (b) decomposition into rotational and
divergent components D and D� from (2.30), (2.31) and (2.27); here K = (D �
kdD /dk)/2 and K� = (D� � kdD�/dk)/2; (c) diagnosis of the balanced components of
the observed spectra Ĉu

V and Ĉv
V ; (d) diagnosis of the inertia–gravity wave component of

the observed spectra Ĉu
W and Ĉv

W . In (a) a line corresponding to a k�3 power law has also
been added for reference.

a scale of approximately 20 km. Using (2.30) and (2.31), we perform the Helmholtz
decomposition into rotational and divergent components (figure 1b). In contrast to the
eastern Pacific case, the rotational part D here vastly dominates over a wide range
of scales: only at 20 km does the divergent component D� become comparable to the
rotational component D . Notably, at large scales the true D� becomes close to zero,
but our computed D� actually becomes negative, which is of course unphysical. This
is the numerical robustness issue discussed at the end of § 2.2.

Since no buoyancy data are available, the only way to decompose into a balanced
part and an inertia–gravity wave part is to make an assumption about the frequency
content of the waves. We choose the GM curve to perform the decomposition,
since the GM empirical spectrum is largely based on observations collected nearby
the North Atlantic region considered here. The diagnosed balanced components
Ĉu

V and Ĉv
V show good agreement with the observed spectra Ĉu and Ĉv in the

range 50–200 km (figure 2c). At larger scales, the reconstruction overestimates the

1020 O. Bühler, J. Callies and R. Ferrari
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FIGURE 1. Observations from the eastern subtropical North Pacific: (a) observed
transverse and longitudinal kinetic energy and potential energy spectra Ĉu, Ĉv , and Ĉb;
(b) decomposition into rotational and divergent components D and D� from (2.30), (2.31)
and (2.27); here K = (D � kdD /dk)/2 and K� = (D� � kdD�/dk)/2; (c) total observed
energy E and total inertia–gravity wave energy EW from (2.37); (d) ratio D /D� compared
to !⇤ from GM spectrum and M2 value for reference; (e) diagnosis of the balanced
components of the observed spectra Ĉu

V , Ĉv
V , and Ĉb

V ; (f ) diagnosis of the inertia–gravity
wave component of the observed spectra Ĉu

W , Ĉv
W , and Ĉb

W . In (a) a line corresponding to
a k�2 power law has also been added for reference.

FIG. 2. ADCP KE spectra for three layers, (a) 26–50, (b) 58–98, and (c) 106–202m, and wave–vortex de-
composition for the 58–98-m layer: (d) total kinetic energy, (e) the geostrophic flow (vortex), and (f) the inertia–
gravity wave components of across-track and along-track components. The figure depicts across-track (red line) and
along-track (blue line) KE spectra and the spectral decomposition into horizontally rotational (green line) and
divergent components (yellow line). In (a)–(c), shades represent 95% confidence limits. For reference, k22 and k23

curves are plotted (gray lines). In (c),(d), the confidence limits are shown as single error bars.
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Relation to observations
Observed atmospheric energy spectra

Revisited Nastrom–Gage (1985) spectrum:

I almost linear IGWs dominate the shallow ‘k−5/3
h ’ part,

Callies, Ferrari & Bühler 2014, 2016 (vs Li & Linborg 2018)

I the shallow part could well be k−2
h .
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Conclusions

I Statistical theory of linear IGWs in weak turbulent flow.
I Energy exchanged on constant-frequency cone through

wave + wave + flow resonant interactions (catalytic
interactions). Lelong & Riley 1991, Bartello 1995.

I Kinetic equation for a(x,k, t) defined in terms of Wigner
transform.

I Similar to weak turbulence.
I Diffusion approximation for kflow � kigw � ω/U:

I predicts k−2 equilibrium spectrum, consistent with oceanic
and atmospheric observations,

I predicts transient scale cascade (to dissipation),

I For kigw ∼ ω/U, statistics of chaotic ray dynamics.
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