New Challenges in Turbulence Research VI Les Houches, February 2021

Large Eddy Simulations of Turbulence and Insights generated regarding Wind Energy

Charles Meneveau Johns Hopkins University

JHU Mechanical Engineering

Institute for Data Intensive Engineering and Science

Coarse-graining - Large-Eddy-Simulation (LES):

Coarse-graining for more affordable simulations

$$u_1(x, y, z_0, t_0)$$

4x10⁹

d.o.f.

$$\tilde{u}_1(x, y, z_0, t_0)$$

10⁵ d.o.f.

Large-eddy-simulation (LES) and filtering:

N-S equations:

$$\frac{\partial u_j}{\partial t} + \frac{\partial u_k u_j}{\partial x_k} = -\frac{\partial p}{\partial x_j} + v \nabla^2 u_j \qquad \frac{\partial u_j}{\partial x_j} = 0$$

Filtered N-S equations:

$$\frac{\partial \tilde{u}_{j}}{\partial t} + \frac{\partial \tilde{u}_{k} u_{j}}{\partial x_{k}} = -\frac{\partial \tilde{p}}{\partial x_{j}} + v \nabla^{2} \tilde{u}_{j}$$
$$\frac{\partial \tilde{u}_{j}}{\partial t} + \tilde{u}_{k} \frac{\partial \tilde{u}_{j}}{\partial x_{k}} = -\frac{\partial \tilde{p}}{\partial x_{j}} + v \nabla^{2} \tilde{u}_{j} - \frac{\partial}{\partial x_{k}} \tau_{j}$$

$$\tilde{u}_1(x,y,z_0,t_0)$$

where SGS stress tensor is:

$$\tau_{ij} = \widetilde{u_i u_j} - \widetilde{u_i u_j}$$

Most common modeling approach: eddy-viscosity

$$\tau_{ij}^{d} = -\mathbf{V}_{sgs} \left(\frac{\partial \tilde{u}_{i}}{\partial x_{j}} + \frac{\partial \tilde{u}_{j}}{\partial x_{i}} \right) = -2\mathbf{V}_{sgs} \tilde{S}_{ij}$$

$$\boldsymbol{v}_{sgs} = l \times vel \sim \Delta \times (\Delta \mid \tilde{\mathbf{S}} \mid)$$

$$V_{sgs} = (c_s \Delta)^2 |\tilde{S}|$$

c_s: "Smagorinsky coefficient"

HISTORY: 1960s, 1970s

- J Smagorinsky
- DK Lilly
- J Deardorff

Effects of τ_{ij} upon resolved motions: Energetics (kinetic energy):

 $\tilde{u}_1(x,y,z_0,t_0)$

Two-point structure of coarse-grained NS:

$$\frac{\partial \frac{1}{2} \tilde{u}_{j} \tilde{u}_{j}}{\partial t} + \tilde{u}_{k} \frac{\partial \frac{1}{2} \tilde{u}_{j} \tilde{u}_{j}}{\partial x_{k}} = -\frac{\partial}{\partial x_{j}} (...) - 2v \tilde{S}_{jk} \tilde{S}_{jk} - \left(-\tau_{jk} \tilde{S}_{jk}\right) \qquad \Pi_{\Delta} = -\left\langle \tau_{jk} \tilde{S}_{jk} \right\rangle$$

Similarly to von Karman-Howarth and Kolmogorov equations, For isotropic turbulence, in inertial range (CM PoF 1994):

" sufficient condition at $r >> \Delta$: predict Π_{Δ} " correctly

$$\left\langle \delta \tilde{u}(r)^{3} \right\rangle + 6 \left\langle \tau_{LL}(x) \delta \tilde{u}(r) \right\rangle = -\frac{4}{5} \Pi_{\Delta} r$$

$$\tau_{ij} = -2(c_s \Delta)^2 \mid \tilde{S} \mid \tilde{S}_{ij}$$

Simplest model that can "control" the "dissipation"

But how much is c_s ?

Theoretical calibration of c_s (D.K. Lilly, 1967) HIT:

$$\Pi_{\Delta} = \varepsilon = -\left\langle \tau_{ij} \tilde{S}_{ij} \right\rangle \qquad \tau_{ij} = -2(c_s \Delta)^2 |\tilde{S}| \tilde{S}_{ij}$$
$$\varepsilon = c_s^2 \Delta^2 2 \left\langle |\tilde{S}| \tilde{S}_{ij} \tilde{S}_{ij} \right\rangle$$
$$\varepsilon \approx c_s^2 \Delta^2 2^{3/2} \left\langle \tilde{S}_{ij} \tilde{S}_{ij} \right\rangle^{3/2}$$

$$\varepsilon \approx c_s^2 \Delta^2 2^{3/2} \left(c_K \varepsilon^{2/3} \frac{3}{4} \left(\frac{\pi}{\Delta} \right)^{4/3} \right)^{3/2} \qquad \Rightarrow 1 \approx c_s^2 \pi^2 \left(\frac{3c_K}{2} \right)^{3/2} \Rightarrow c_s = \left(\frac{3c_K}{2} \right)^{-3/4} \pi^{-1}$$
$$c_K = 1.6 \Rightarrow c_s \approx 0.16$$

How to avoid "tuning" and case-by-case adjustments of model coefficient in LES?

The Dynamic Model (30 years anniversary) (Germano et al. Physics of Fluids, 1991)

Masimo Germano (proposed G-identity)

A dynamic subgrid-scale eddy viscosity model

Massimo Germano,^{a)} Ugo Piomelli,^{b)} Parviz Moin, and William H. Cabot *Center for Turbulence Research, Stanford, California* 94305

(Received 14 November 1990; accepted 7 March 1991)

One major drawback of the eddy viscosity subgrid-scale stress models used in large-eddy simulations is their inability to represent correctly with a single universal constant different turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes. In the present work a new eddy viscosity model is presented which alleviates many of these drawbacks. The model coefficient is computed dynamically as the calculation progresses rather

(Germano et al. 1991): Exact ("rare" in turbulence): **E(k)** $-\overline{\tilde{u}}_i\overline{\tilde{u}}_j$ $\overline{\widetilde{u_i u_j}} - \overline{\widetilde{u}_i} \overline{\widetilde{u}_j} = \overline{\widetilde{u_i u_j}}$ k τ LES resolved SGS

Germano identity and dynamic model

Germano identity and dynamic model (Germano et al. 1991): Exact ("rare" in turbulence): **E(k)** $\overline{\widetilde{u_i u_j}} - \overline{\widetilde{u}_i} \overline{\widetilde{u}_j} = \overline{\widetilde{u_i u_j}} - \overline{\widetilde{u}_i} \overline{\widetilde{u}_j} + \overline{\widetilde{u}_i} \overline{\widetilde{u}_j} - \overline{\widetilde{u}_i} \overline{\widetilde{u}_j}$ L_{ij} 7 _{ij} $\overline{ au}_{ii}$ + k τ LES resolved SGS

(Germano et al. 1991): Exact ("rare" in turbulence): **E(k)** $\overline{\widetilde{u_i}\widetilde{u_j}} - \overline{\widetilde{u}_i}\overline{\widetilde{u}_j} = \overline{\widetilde{u_i}\widetilde{u}_j} - \overline{\widetilde{u}_i}\overline{\widetilde{u}_j} + \overline{\widetilde{u}_i}\overline{\widetilde{u}_j} - \overline{\widetilde{u}_i}\overline{\widetilde{u}_j}$ $T_{ij} = \overline{\tau}_{ij} + L_{ij}$ $L_{ii} - (T_{ii} - \overline{\tau}_{ii}) = 0$ k τ Т LES resolved SGS

Germano identity and dynamic model

Germano identity and dynamic model

(Germano et al. 1991):

Exact ("rare" in turbulence):

$$\overline{\widetilde{u_{i}}\widetilde{u_{j}}} - \overline{\widetilde{u_{i}}}\overline{\widetilde{u}_{j}} = \overline{\widetilde{u_{i}}}\overline{\widetilde{u}_{j}} - \overline{\widetilde{u_{i}}}\overline{\widetilde{u}_{j}} + \overline{\widetilde{u_{i}}}\overline{\widetilde{u}_{j}} - \overline{\widetilde{u}_{i}}\overline{\widetilde{u}_{j}}$$

$$T_{ij} = \overline{\tau_{ij}} + L_{ij}$$

$$L_{ij} - (T_{ij} - \overline{\tau_{ij}}) = 0$$

$$-2(c_{s}2\Delta)^{2} |\overline{S}| |\overline{S}_{ij} - 2(c_{s}\Delta)^{2} |\overline{S}| |\overline{S}_{ij}$$

Assumes scale-invariance:

$$L_{ij} - c_s^2 M_{ij} = 0$$

where $M_{ij} = 2\Delta^2 \left(|\tilde{S}| \tilde{S}_{ij} - 4| \tilde{S}| \tilde{S}_{ij} \right)$

Germano identity and dynamic model

(Germano et al. 1991):

$$L_{ij}-c_s^2 M_{ij}=0$$

Over-determined system: solve in "some average sense" (minimize error, Lilly 1992):

$$\mathbf{E} = \left\langle \left(L_{ij} - c_s^2 M_{ij} \right)^2 \right\rangle$$

Minimized when:

Averaging over regions of statistical homogeneity or fluid trajectories

"Machine Learning":
Computer "learns" C_s by focusing on the right statistics/physics

Lagrangian averaging

- How and from where to "learn" from large scales:
- Time averaging: should be in Lagrangian frame for Galilean invariance....
- Averaging backward in time along particle trajectory.

$$L_{f} = \int_{-\infty}^{t} f(\mathbf{z}(t'), t') \frac{1}{T} \exp\left(-\frac{t-t'}{T}\right) dt'$$

According to this model, the Smagorinsky coefficient is evaluated as

$$c_{\rm S} = \mathcal{J}_{\rm LM} / \mathcal{J}_{\rm MM}, \qquad (13.268)$$

where \mathcal{J}_{LM} and \mathcal{J}_{MM} represent the averages $(M_{ij}\mathcal{L}_{ij})_{ave}$ and $(M_{ij}M_{ij})_{ave}$. The simple relaxation equation

$$\frac{\overline{D}\mathcal{J}_{\rm MM}}{\overline{D}t} = -(\mathcal{J}_{\rm MM} - M_{ij}M_{ij})/T \qquad (13.269)$$

is solved for \mathcal{J}_{MM} , where T is a specified relaxation time. This is equivalent to averaging along the particle path, with relative weight $\exp[-(t-t')/T]$ at the earlier time t'. The similar equation that is solved for \mathcal{J}_{LM} is

e similar equation that is solved for
$$\mathcal{J}_{LM}$$
 is

$$\frac{\overline{D}\mathcal{J}_{LM}}{\overline{D}t} = -I_0(\mathcal{J}_{LM} - M_{ij}\mathcal{L}_{ij})/T, \qquad (13.270)$$

Pope textbook

CM, Lund & Cabot (JFM, 1996)

Scale dependence: highly relevant for wall-modeled LES

Scale-dependence:

 Δ and esp. 2Δ **not** in inertial range !!

 $C_{s}(\Delta) \sim \Delta^{\varphi}$ $C_{s}(\hat{\Delta}) = \gamma_{c} C_{s}(\Delta)$ $\gamma_{c} = C_{s,\hat{\lambda}}^{2} / C_{s,\Delta}^{2} = C_{s,\bar{\Delta}}^{2} / C_{s,\hat{\lambda}}^{2}$

Test-filtering at 2 scales: e.g. 2Δ and 4Δ

Porte-Agel, CM & Parlange (JFM, 2000)

Example application of LES: Wind farm simulations using LASD SGS model (and ADM)

Stevens et al. (2016)

Code: LESGO

A pertinent new "canonical turbulent flow": The windturbine-array boundary layer (WTABL) (=WAKES + ATMOSPHERIC BOUNDARY LAYER)

Horns Rev 1: Photograph: Christian Steiness

Photo credit: Bel Air

JOHNS HOPKINS Center for Environmental & Applied Fluid Mechanics

JHU Mechanical Engineering

Collaborators:

- Richard J.A.M. Stevens (now Twente U., NL) LES + CWBL
- Marc Calaf (now U. Utah) LES + BL models
- Prof. Johan Meyers (KU Leuven, B) LES
- Dennice Gayme (JHU) reduced models + control
- Juliaan Bossuyt (KU Leuven, JHU visiting student, B) windtunnel
- Michael Howland (JHU undergrad till 2016) windtunnel
- Michael Wilczek (now MPI Göttingen, D) spectral theory

Funding: NSF OISE-1243882 (WINDINSPIRE project) Simulations: XSEDE, SARA (NL) & MARCC

10 Mechanical Engineering

Fluid mechanics of the wind turbine-array boundary layer (WTABL)

From: R.J.A.M. Stevens & C.M., "Flow structure and turbulence in wind farms", (2017), Annu. Rev. Fluid Mech. 49, 311-339.

JOHNS HOPKINS Center for Environmental & Applied Fluid Mechanics

JHU Mechanical Engineering

Wind farm design & optimization:

great need for simple engineering (reduced) models

1. Mean Power optimization: mean velocity

$$P_{\text{turb}} = \frac{1}{2} C_P \rho \frac{\pi}{4} D^2 U_{\text{turb}}^3$$
$$\frac{1}{P_{\text{max}}} P_{tot}(s, D, z_h, C_T, \text{layout.}) = \sum_{\text{all turbines}} \left(\frac{U_{turb}}{U_{h-in}}\right)^3$$

2. Fluctuations: power variability due to turbulence

JOHNS HOPKINS Center for Environmental & Applied Fluid Mechanics

JHU Mechanical Engineering

Jensen model: The single wake Lissaman (1979) / static Jensen (1984) V(1 - 2a)V(1-a) $U_{h-in} = V$ $\delta u(x)$ k_{w}

inviscid momentum theory gives "IC" for wake model

 1_{1}

wake model: turbulence governs growth rate *k_w* of wake

$$a = \frac{1}{2} (1 - \sqrt{1 - C_T})$$

$$\delta u(x, j) = U_{h0} - u(x) = \frac{2aU_{h0}}{\left(1 + 2k_w \frac{x - x_j}{D}\right)^2}$$

Jensen model: The wake superposition

Lissaman (1979) / Katic et al. (1986)

$$u'^{2} \sim \delta u^{2} \implies \Sigma u'^{2} \sim \Sigma \delta u^{2} \implies$$
$$\Rightarrow \delta u_{net}^{2} = \Sigma \delta u_{j}^{2} \implies 1 - \frac{U_{h}}{U_{h0}} = \left(\Sigma \left(\frac{\delta u_{j}}{U_{h0}}\right)^{2}\right)^{1/2}$$

Superposition of squared velocity deficits, can be rationalized by assuming that kinetic energy is additive (independent turbulence fluctuations)

$$\frac{U_h(s, C_T, ...)}{U_{h0}} = 1 - \left(1 - \sqrt{1 - C_T}\right) \left(\sum_{j \in J_{Tk}} \left[1 + 2k_w \frac{x_{Tk} - x_j}{D}\right]^{-4}\right)^{1/2}$$

But no connection to ABL structure (OK for small farms)

A boundary layer (canopy flow) view: the mean velocity vertical profiles in fully developed WTABL

horizontal (canopy) average

Data: from LES of WTABL typical simulation setup:

• LES code: horizontal pseudo-spectral (periodic B.C.), vertical: centered 2nd order FD (Moeng 1984, Albertson & Parlange 1999, Porté-Agel et al. 2000, Bou-Zeid et al. 2005)

$$\nabla \cdot \mathbf{\hat{u}} = 0$$
$$\frac{\partial \mathbf{\tilde{u}}}{\partial t} + \mathbf{\tilde{u}} \cdot \nabla \mathbf{\tilde{u}} = -\nabla \mathbf{\tilde{p}}^* - \nabla \cdot \mathbf{\tau} + \mathbf{f}$$

High-fidelity, but has large computational cost

 $H = 1000 - 1500m, \quad L_x = \pi H - 2\pi H, \quad L_y = \pi H$ $(N_x \times N_y \times N_z) = 128 \times 128 \times 128 \implies 1024 \times 512 \times 512$

- Horizontal periodic boundary conditions (for FD-WTABL, or precursor for developing)
- Top surface: zero stress, zero w
- Bottom surface B.C.: w=0 + Wall stress: Standard wall function relating wall stress to $u(z_1)$
- Scale-dependent dynamic Lagrangian model eddy-viscosity (*no* adjustable parameters
- More details: Calaf et al. Phys. Fluids. 22 (2010) 015110

Horizontal mean velocity in WTABL from LES (ADM):

Calaf et al 2010 (confirming hypothesis by Frandsen 1992): 2 log-laws

Other studies of WTABL velocity distributions:

- Cal et al. (JRSE 2010)
- Johnstone & Coleman (J Wind Eng & Ind A, 2012)
- Yang, Kang & Sotiropoulos (PoF 2012)
- Chamorro & Porté-Agel (2013)
- Chatterjee & Peet (Pys Rev Fluids 2018)
- Ghate & Lele (J Fluid Mech, 2017)

S. Frandsen 1992, Frandsen et al. 2006, Calaf et al 2010, Stevens 2015..:

Two "constant stress" layers with:

$$u_{*hi}^2 \approx u_{*lo}^2 + \frac{1}{2}C_T \frac{\pi}{4s_x s_y}U_h^2$$

In wake layer, reduced slope:

$$\frac{\partial \left\langle \overline{u} \right\rangle}{\partial z} = \frac{1}{\kappa u_* z_h + v_w} u_*^2$$

Effective wind farm roughness:

$$z_{0,hi} = z_h \left(1 + \frac{D}{2z_h} \right)^{\beta} \exp \left(- \left[\frac{\pi C_T}{8\kappa^2 s_x s_y} + \left(\ln \left[\frac{z_h}{z_{0,ground}} \left(1 - \frac{D}{2z_h} \right)^{\beta} \right] \right)^{-2} \right]^{-1/2} \right]^{-1/2}$$

Mean velocity at hub height, normalized by ABL unperturbed inflow :

$$\frac{U_h(s, C_T, \dots)}{U_{h0}} = \frac{\ln\left(\delta / z_{0, \text{lo}}\right)}{\ln\left(\delta / z_{0, \text{hi}}\right)} \ln\left[\left(\frac{z_h}{z_{0, \text{hi}}}\right)\left(1 + \frac{D}{2z_h}\right)^{\beta}\right] \left[\ln\left(\frac{z_h}{z_{0, \text{lo}}}\right)\right]^{-1}$$

Top down model:

SIDE NOTE: Top-down model enables us to understand fate of mean kinetic energy in the WTABL:

Instead of being dissipated entirely in BL, mean KE extracted by turbines and dissipated

Coupled wake boundary layer model (CWBL)

$$\frac{\ln\left(\delta/z_{0,\text{lo}}\right)}{\ln\left(\delta/z_{0,\text{hi}}\right)}\ln\left[\left(\frac{z_{\text{h}}}{z_{0,\text{hi}}}\right)\left(1+\frac{D}{2z_{\text{h}}}\right)^{\beta}\right]\left[\ln\left(\frac{z_{h}}{z_{0,\text{lo}}}\right)\right]^{-1} = \frac{1}{N_{d}}\sum_{k=1}^{N_{d}}\left[1-2a\left(\sum_{j\in J_{A,k}}\left[1+k_{w,\infty}\frac{x_{T,k}-x_{j}}{R}\right]^{-4}\right)^{1/2}\right]$$
$$z_{0,hi} = z_{h}\left(1+\frac{D}{2z_{h}}\right)^{\beta}\exp\left(-\left[\frac{\pi C_{T}}{8\kappa^{2}w_{s}}s_{x}s_{y}}+\left(\ln\left[\frac{z_{h}}{z_{0,ground}}\left(1-\frac{D}{2z_{h}}\right)^{\beta}\right]\right)^{-2}\right]^{-1/2}\right)$$

Model comparisons with LES (fully developed) **CWBL model:** distinguishes well between aligned & staggered cases **Color indicates** spanwise spacing $s_y D$ $\left(rac{{U}_h(\infty)}{{U}_{h=0}} ight)^3$ s_v=3.49 $s = \sqrt{s_x s_y}$ s_v=5.23 s_v=7.85 $s_x D$ Wake model 0.8 д ^₈ 0.6 0.4 Staggered Aligned 0.2 5 8 12 18 3 5 8 12 18 3 S ХХХ

Stevens, Gayme, Meneveau, JRSE 7, 023115 (2015)

O: LES -----: CWBI

Model comparisons with LES (fully developed) **CWBL model:** distinguishes well between aligned & staggered cases **Color indicates** spanwise spacing $s_v D$ $\left(\frac{U_h(\infty)}{U_{h-0}}\right)^3 \qquad s = \sqrt{s_x s_y}$ s_v=3.49 s_v=5.23 s_v=7.85 Coupled wake boundary $S_{x}D$ Wake model Top-down model laver model 0.8 д _____ 0.6 0.4 Staggered Staggered Aligned Aligned Aligned Staggered 0.2 5 8 12 18 3 s 5 8 12 18 3 5 8 12 18 3 5 8 12 18 3 5 12183 8 S S $\times \times \times$ ХХХ

O: LES -----: CWBL

Stevens, Gayme, Meneveau, JRSE 7, 023115 (2015)

Model comparisons with LES (fully developed) **CWBL model:** distinguishes well between aligned & staggered cases **Color indicates** spanwise spacing $s_y D$ $\left(rac{{U}_h(\infty)}{{U}_{h=0}} ight)^3$ s_v=3.49 $s = \sqrt{s_x s_y}$ s_v=5.23 s_v=7.85 Coupled wake boundary $s_x D$ Wake model Top-down model layer model 0.4 Aligned Aligned Staggered Aligned Staggered Staggered 0.2 5 1218 3 5 1218 3 8 12 18 3 5 8 12 18 8 12 18 3 5 8 12 18 3 8 5 5 s JJJ S S 111 XXX $\mathbf{X} \mathbf{X} \mathbf{X}$

O: LES -----: CWBL

Stevens, Gayme, Meneveau, JRSE 7, 023115 (2015)

Model comparisons with LES and field data (Horns Rev)

Figure 8

Normalized total power output P/P_{max} of Horns Rev wind farm as a function of the incoming wind direction, where P_{max} is the power of a non-wake-affected turbine times the number of turbines. The field measurement data are digitally extracted from the figure on page 25 of Peña et al. (2013). The large-eddy simulation (LES) results are from Porté-Agel et al. (2013); the coupled wake boundary layer (CWBL), Jensen, and top-down results are from Stevens et al. (2016b). Figure adapted with permission from Stevens et al. (2016b, figure 8).

Stevens & M, Annu Rev Fluid Mech (2017)

Temporal fluctuations in power:

Simulations: R.J.A.M. Stevens et al, JRSE **6**, 023105 (2014), using ADM in JHU-LES code

Visualization courtesy of D. Brock (Extended Services XSEDE)

Wind tunnel tests in a "micro-windfarm" in the Corrsin wind tunnel: (Juliaan Bossuyt's thesis, KU Leuven) J. Bossuyt, CM & J. Meyers (Exp Fluids 2016, JFM 2017)

Flyby over micro-windfarm in Corrsin wind tunnel at JHU (staggered)

Power-spectral density of "power" fluctuations:

$$P_{tot}(t; s, D, z_h, C_T, layout..) = \sum_{n=1}^{\infty} \frac{1}{2} c_p \rho A(U_h(t))^3$$

• Spectral properties of fluctuations delivered to grid

$$E_P(\omega; s, D, z_h, C_T, layout..) = PSD(P')$$

We seek analytical models of spectral properties as function of wind farm design parameters (spacing, etc..)

Interpret power as discrete sampling of TBL:

$$E_{P'}(\omega) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\hat{g}(k_1, k_2)|^2 E_{11}(k_1, k_2, \omega, z_h) dk_1 dk_2$$

JOHNS HOPKINS Center for Environmental & Applied Fluid Mechanics

JHU Mechanical Engineering

Needed:

Transfer function of turbine array (spacing, layout)

$$g(x,y) = \sum_{i=1}^{N} \delta(x - x_i) \frac{1}{D} H\left(\frac{D}{2} - |y - y_i|\right).$$
$$|\widehat{g}(k_1, k_2)|^2 = \left(\frac{\sin\left(k_2 \frac{D}{2}\right)}{k_2 \frac{D}{2}}\right)^2 \left(\sum_{i=1}^{N} \sum_{j=1}^{N} \cos\left(k_1 \left(x_i - x_j\right) + k_2 \left(y_i - y_j\right)\right)\right).$$

Center for Environmental & Applied Fluid Mechanics

JHU Mechanical Engineering

Analytical model for wave#-freq spectrum of BL turbulence $E_{11}(k_x,k_y,\omega;z_h)$:

$$E_{11}(k_x,k_y,\omega;z) = \left\{ \begin{bmatrix} 1-\theta_{\alpha} \end{bmatrix} A \left[\left(\frac{1}{H}\right)^4 + k_x^4 \right]^{-1/4} + \theta_{\alpha} \frac{\Gamma\left(\frac{1}{3}\right)}{5\sqrt{\pi}\Gamma\left(\frac{5}{6}\right)} C_{\kappa} \varepsilon^{2/3} \left[1-\frac{8}{11} \frac{k_x^2}{k^2} \right] k^{-8/3} \right\} \left[2\pi\sigma^2(z) \right]^{-1/2} \exp\left[-\frac{(\omega-\mathbf{k}\cdot\mathbf{U})^2}{2\sigma^2(z)} \right]$$
$$U(z) = \frac{u_*}{\kappa} \log\left(\frac{z}{z_0}\right) \qquad \left\langle v_x^2 \right\rangle = u_*^2 \left[B - A \log\left(\frac{z}{H}\right) \right] \qquad \text{Wilczek et al. JFM 2015}$$
$$\sigma^2(z) = \left\langle (\mathbf{v}\cdot\mathbf{k})^2 \right\rangle = \left\langle v_x^2 \right\rangle k_x^2 + \left\langle v_y^2 \right\rangle k_y^2 \qquad \sigma^2(z) = \left\langle v_x^2 \right\rangle \left[k_x^2 + Ck_y^2 \right], \quad A=0.96, \quad B=2.41, \quad C=0.33, \quad \kappa=0.4$$

 10^{0}

 10^{-1}

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-5}

 10^{-6}

20

Comparisons of measured and model spectra

$$E_{P'}(\omega) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\hat{g}(k_1, k_2)|^2 E_{11}(k_1, k_2, \omega, z_h) dk_1 dk_2$$

Aligned array (lines: data, dashed line: model)

Comparisons of measured and model spectra

Staggered array (lines: data, dashed line: model)

With this model, fluctuations can be included in cost function (e.g. power smoothing properties of various array configurations)

Closing:

- We are in the process of a major energy infrastructure shift –
 50% wind electricity in a few decades possible must get it right
- LES provides unprecedented fidelity of complex processes (Dynamic model: "applied RNG method", using scale-invariance)
- Still too expensive for design not used routinely, even RANS
- At least we can provide simulation-informed simpler models (e.g. analytical or reduced dimension) to improve design/control tools

$$\frac{\ln(\delta/z_{0,\text{lo}})}{\ln(\delta/z_{0,\text{hi}})}\ln\left[\left(\frac{z_{\text{h}}}{z_{0,\text{hi}}}\right)\left(1+\frac{D}{2z_{\text{h}}}\right)^{\beta}\right]\left[\ln\left(\frac{z_{\text{h}}}{z_{0,\text{lo}}}\right)\right]^{-1} = \frac{1}{N_{d}}\sum_{k=1}^{N_{d}}\left[1-2a\left(\sum_{j\in J_{A,k}}\left[1+k_{w,\infty}\frac{x_{T,k}-x_{j}}{R}\right]^{-4}\right)^{1/2}\right]$$

$$E_{P'}(\omega) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\hat{g}(k_1, k_2)|^2 E_{11}(k_1, k_2, \omega, z_h) dk_1 dk_2$$

Center for Environmental & Applied Fluid Mechanics

1U Mechanical Engineering

