Particles in turbulence: from tracers to inertial objects

Aurore Naso

Laboratoire de Mécanique des Fluides et d'Acoustique CNRS, École Centrale de Lyon, UCB Lyon 1, INSA de Lyon France

New Challenges in Turbulence Research VI – 10/02/2021

Turbulence has been for a long time studied in the Eulerian framework

 \rightarrow velocity increments:

$$\delta \mathbf{u}^{(E)} = \mathbf{u}(\mathbf{x} + \mathbf{r}, t) - \mathbf{u}(\mathbf{x}, t)$$

δu^(E) can be profitably projected onto preferential directions, along and perpendicular to r :

Longitudinal
$$\delta u_{\parallel}^{(E)} = \delta \mathbf{u}^{(E)} \cdot \hat{\mathbf{r}}$$

Transverse $\delta u_{\perp}^{(E)} = |\delta \mathbf{u}^{(E)} \times \hat{\mathbf{r}}| \cos \theta$
 $\hat{\mathbf{r}} = \mathbf{r}/r$; $\theta \in [0, 2\pi[$

In statistically stationary, homogeneous and isotropic turbulence, the statistics of these quantities only depend on r = |r|. In the past decades, growing interest in examining turbulence from a Lagrangian point of view

Natural formulation for turbulent transport (1 part.) and mixing (>1 part.)

Lagrangian velocity increments:

$$\delta \mathbf{u}^{(L)} = \mathbf{u}(\mathbf{x},t|s) - \mathbf{u}(\mathbf{x},t|t)$$

Standard projection on a fixed coordinate system:

$$\delta u_{xyz}^{(L)} = \delta \mathbf{u}^{(L)}$$
 . \mathbf{e}_i

► In statistically stationary, homogeneous and isotropic turbulence, the statistics of $\delta u_{xyz}^{(L)} = \delta u_x^{(L)}$ only depend on τ =s-t.

Expected scaling laws of velocity increments in the inertial range of scales (in HIT=homogeneous and isotropic turbulence):

Eulerian:

✓ Structure functions:

$$S_p^E(r) = \langle (v(\mathbf{x} + \mathbf{r}) - v(\mathbf{x}))^p \rangle$$

✓ Dimensional prediction (η << r << L):

 $S_p^E(r) \sim (\varepsilon r)^{\xi_p}; \ \xi_p = p/3$

✓ In particular:

$$S_3^E(r)=-\frac{4}{5}\varepsilon r$$

 → derived exactly from the Kármán-Howarth equation
 → time-irreversibility of turbulence

Lagrangian:

Structure functions:

$$D_p^L(\tau) = \langle (v(t+\tau) - v(t))^p \rangle$$

✓ Dimensional prediction ($\tau_{\eta} << \tau << T_{L}$): $D_{p}^{L}(\tau) \sim (\varepsilon \tau)^{\zeta_{p}}; \quad \zeta_{p} = p/2$

✓ In particular:

 $D_2^L(\tau) = C_0 \varepsilon \tau$

(not exact !)

Zero odd moments

Important quantities in Lagrangian turbulence: acceleration and pressure gradient

- Acceleration of a fluid particle = natural parameter.
- > Yeung, PoF 1997: the accelerations of a pair of particles initially close to each other can stay correlated over times >> τ_{η} .

Vedula & Yeung, PoF 1999:

$$\mathbf{a} = \frac{D\mathbf{u}}{Dt} = -\frac{1}{\rho}\nabla p + \nu\nabla^2 \mathbf{u} = \mathbf{a}_{\mathbf{p}} + \mathbf{a}_{\mathbf{v}} \quad \rightarrow \text{if Re large: } \mathbf{a} \sim \mathbf{a}_{\mathbf{p}}$$

The **pressure gradient** fluctuations have Eulerian length scales >> η (nonlocal quantity !!!)

 \blacktriangleright K41 pressure spectrum is obtained for $R_{\lambda} > 600$ only (*Tsuji & Ishihara, PRE 2003*).

Acceleration statistics

Cornell: La Porta et al, Nature 2001

« silicon strip detectors »

and Lyon: Volk, Mordant, Verhille & Pinton, 2008

laser Doppler

- Acceleration PDF: symmetric and highly nonGaussian (very large accelerations).
- > Asymptotic shape at high Re $(R_{\lambda} \ge 600).$

$$\langle a_i a_j \rangle = a_0 \varepsilon^{3/2} \nu^{-1/2} \delta_{ij}$$

Pair statistics

Bourgoin, JFM 2015:

Physical phenomenology for the time evolution of the mean-square relative separation, based on a scale-dependent ballistic scenario.

Tetrad statistics

• Following a set of four particles gives access to the local flow topology (*Chertkov*, *Pumir* & Shraiman, PoF 1999; Naso & Pumir, PRE 2005).

Douady, Couder & Brachet, PRL 1991

1.0

0.9· 0.8· (b)

 New point of view on turbulence: energy transfer (*Pumir, Shraiman & Chertkov, EPL 2001*), small scales universality (*Naso, Chertkov & Pumir, JoT 2006*), refined LES schemes (*van der Bos, Tao, Meneveau & Katz, PoF 2002*; *Pumir & Shraiman, JSP 2003*; *Chevillard, Li, Eyink & Meneveau, 2008*).

- Geometry: Tetrahedra flatten (I = moment-of-inertia tensor).
- Statistics and dynamics of the perceived velocity gradient tensor: Alignment between perceived vorticity and perceived strain

Pumir, Bodenschatz & Xu, PoF 2013

 $\begin{array}{c}
0.7 \\
0.6 \\
0.7 \\
0.7 \\
0.4 \\
0.3 \\
0.2 \\
0.1 \\
0.2 \\
0.1 \\
0.0 \\
0.2 \\
0.4 \\
0.6 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.12 \\
0.14 \\
1/t_0
\end{array}$

<[.>

Xu, Ouellette & Bodenschatz, NJP 2008

Lagrangian turbulence deals with (ideal) fluid particles.
 Transport of real particles (solid inclusions, drops, bubbles) ?

- Investigations of the turbulent transport of small (< η) particles:</p>
 → Lagrangian description of particles motion by a force balance
- More recent investigations on large inclusions:
 - → solid particles: Exp. Qureshi et al, 2007; Zimmermann et al, 2011; Bellani & Variano, 2012; Klein et al, 2013; Zimmermann et al, 2013; Mathai et al, 2015; ...

Num. Lucci et al, 2010; Naso & Prosperetti, 2010; Cisse, Homann & Bec, 2013; Chouippe & Uhlmann, 2015; Chouippe & Uhlmann, 2019; ...

→ bubbles: Exp. Ravelet et al, 2011; Prakash et al, 2012; Alméras et al, 2017; ...

Num. Merle, Legendre & Magnaudet, 2005; Lu & Tryggvason, 2006, 2013; Loisy & Naso, PRF 2017; ...

Turbulent transport of finite-size (d >> η) inclusions

Modeling: many open questions:

- \rightarrow equations of motion (translation, rotation) ?
- \rightarrow "slip" velocity ?
- \rightarrow backreaction on the carrier phase ?

 Severe difficulties for numerics: Need of fully resolved simulations

Naso & Prosperetti, NJP 2010 Loisy, Naso & Spelt, JFM 2017

(solid particle)

(bubbles)

Lagrangian description of particles motion by a force balance:

$$m_{p} \frac{d\mathbf{V}}{dt} = m_{p}\mathbf{g} + m_{f}(\frac{D\mathbf{U}}{Dt} - \mathbf{g}) + \mathbf{F_{P}}$$

 F_P (force due to the particle) = ???

Basset-Boussinesq-Oseen equation (spherical solid particle)

Boussinesq , C. R. Acad. Sci. Paris 1885; Basset, 1888; Gatignol, J. Mech. Theor. Appl. 1983; Maxey & Riley, PoF 1983

$$m_p \frac{d\mathbf{v}_p}{dt} = m_f \frac{D\mathbf{u}}{Dt} + 6\pi r\mu_f (\mathbf{u} - \mathbf{v}_p) + \frac{1}{2}m_f \left(\frac{D\mathbf{u}}{Dt} - \frac{d\mathbf{v}_p}{dt}\right) + 6r^2 (\pi\mu_f\rho_f)^{1/2} \int_0^t \frac{d(\mathbf{u} - \mathbf{v}_p)/d\tau}{(t - \tau)^{1/2}} d\tau + (m_p - m_f)\mathbf{g}$$

= Fluid acceleration + Stokes drag + Added mass + History force + Buoyancy

Expression derived assuming a Stokes flow at the particle scale: $Re_p = 2r|u-v|/v \ll 1$!!!

Turbulent transport of small (d < η) inclusions

In the limit of small, spherical, very dense particles, $\rho_p/\rho_f >> 1$

(e.g., sand in air, water droplets in air, ...)

 \Rightarrow

$$m_p \frac{d\mathbf{v}_p}{dt} = 6\pi r \mu_f (\mathbf{u} - \mathbf{v}_p)$$

Ireland & Collins

$$\frac{d\mathbf{v}_p}{dt} = \frac{\mathbf{u} - \mathbf{v}_p}{St}$$

$$St = \frac{2r^2}{9\nu\tau_\eta}\frac{\rho_p}{\rho_f} = \tau_p \,/\,\tau_\eta$$

Stokes number

- St<<1: particle ~ fluid tracer
- St>>1: very inertial particle

Turbulent transport of small (d < η **) inclusions**

In the limit of small, spherical, very dense particles, $\rho_p/\rho_f >> 1$ and in the presence of gravity

$$\frac{d\mathbf{v}_p}{dt} = \frac{\mathbf{u} - \mathbf{v}_p}{St} + \mathbf{g}$$

Increasing complexity

Outline

Time irreversibility of turbulence in the Lagrangian framework

In coll. with: Emmanuel Lévêque (LMFA)

- Consensus: the statistics of turbulence should connect explicitly to its peculiar geometric properties (see, e.g., Chertkov et al, PoF 1999; Li & Meneveau, PRL 2005; Naso & Pumir, PRE 2005; Chevillard & Meneveau, PRL 2006; ...), not captured by the standard velocity increments
- Idea: try to recast such properties in the classical phenomenology of turbulence, by introducing longitudinal and transverse Lagrangian velocity increments:

$$\mathbf{u}(\mathbf{x},t|t) \qquad \qquad \mathbf{u}(\mathbf{x},t|s) \qquad \qquad \mathbf{u}(\mathbf{x},t$$

- natural extension of their Eulerian counterparts
- alternative path to the description of Lagrangian statistics

> In stationary, homogeneous and isotropic turbulence, the statistics of $\delta u_{\parallel}^{(L)}(\mathbf{x},t|s)$ and $\delta u_{\perp}^{(L)}(\mathbf{x},t|s)$ only depend on the time interval $\tau=s-t$

 $\succ \quad \text{In the limit } \tau \to 0,$

 $\begin{array}{l} \delta u_{\parallel}^{(L)}\left(\tau\right) ~~ \tau ~a_{\parallel} \\ a_{\parallel}: \textbf{tangential acceleration}, ~quantifying \\ \text{the variation of velocity magnitude} \end{array}$

 $\delta u_{\perp}^{(L)}(\tau) \sim \tau a_{\perp}$ a_{\perp}: normal acceleration, sensitive to the trajectory curvature

> Investigation, by DNS, of the statistics of these increments at different R_{λ} .

Acceleration PDF ($\tau \rightarrow 0$) ($R_{\lambda} = 280$)

Lévêque & Naso, EPL 2014

PDF of a_{||} negatively skewed (Sk ≈ -0.4) => time-irreversibility of turbulence deceleration > (positive) acceleration (see also power fluctuations and kinetic energy increments;

Xu et al, PNAS 2014; Mordant, 2001

PDF of the longitudinal velocity increments $\delta U_{\parallel}^{(L)}$ (R_{λ} = 280)

Statistics conditioned on the flow topology

- Longitudinal increment exactly zero in the case of pure (constant-speed) rotation
 - → should be of higher magnitude when the trajectory is straight (in flow regions of high strain)

Transverse increment vanishes for a straight trajectory

→ should be of higher magnitude when the trajectory twists itself (in flow regions of high vorticity)

δu_{II}^(L) $\mathbf{u}(\mathbf{x},t|s)$ **u**(**x**,t|t) $\mathbf{y}(\mathbf{x},t|s)$ $\delta u_{\perp}^{(L)}$ δυ

Statistics conditioned on the flow topology

Variances of the acceleration components conditioned on the sign of Δ ?

Statistics conditioned on the flow topology

> Variances of the acceleration components conditioned on the sign of Δ

$$1 < \frac{\langle a_{\parallel}^2 | \Delta > 0 \rangle}{\langle a_{\parallel}^2 | \Delta < 0 \rangle} < \frac{\langle a_{xyz}^2 | \Delta > 0 \rangle}{\langle a_{xyz}^2 | \Delta < 0 \rangle} < \frac{\langle a_{\perp}^2 | \Delta > 0 \rangle}{\langle a_{\perp}^2 | \Delta < 0 \rangle}$$

- > Therefore:
 - Higher variances in vorticity-dominated regions than in strain-dominated ones, for all the components.
 - Effect more pronounced for the transverse component than for the longitudinal one.

Further studies

Time irreversibility of turbulence also evidenced in the Lagrangian framework, both in 2D and 3D, through measurement of Sk(p=u.a) and Sk(δE):

Xu, Pumir, Falkovich, Bodenschatz et al, PNAS 2014

Pumir, Xu, Boffetta, Falkovich & Bodenschatz, PRX 2014: In 3D, [<p³> < 0] essentially due to cross-correlation of pressure and dissipation.

 Pumir, Xu, Bodenschatz & Grauer, PRL 2016: In 3D, [<p³> < 0] linked with positive sign of vortex stretching.

Time irreversibility of the statistics of a single particle also investigated in compressible (Grafke, Frishman & Falkovich, PRE 2015) and in rotating (Maity, Govindarajan & Ray, PRE 2019) turbulence.

Settling, orientation and collisions of spheroidal particles: application to cloud microphysics

In coll. with: Alain Pumir, <u>Muhammad Z. Sheikh, Jennifer Jucha,</u> <u>Facundo Cabrera</u>, Nicolas Plihon, Mickael Bourgoin (Laboratoire de Physique, ÉNS Lyon) Bernhard Mehlig, Kristian Gustavsson (Gothenburg University, Sweden) Emmanuel Lévêque, Diego Lopez (LMFA)

Settling, orientation, collisions and aggregation of particles in cold clouds

Collision and aggregation of ice crystals
 → formation of graupels

Electron and confocal microscopy laboratory, US Agriculture Research Center

Ice crystals orientation \rightarrow EM waves (light) reflexion

See also Bréon & Dubrulle, JAS 2004.

https://www.atoptics.co.uk/halo/lpil.htm

•

Crystals motion

• Assume that the crystal is a thin oblate ellipsoid of revolution (spheroid): c << b=a.

- Small (a < η), heavy ($\rho_p >> \rho_f$) and spheroidal particles.
- The force and torque acting on the spheroid must be determined by solving the (Navier-)Stokes equations around the object.

First effect of fluid inertia on the translational motion

 Translational and rotational dynamics of spheroidal particles in turbulence: For particles ≠ fluid tracers, need to write equations of motion

$$\label{eq:mp} \begin{split} m_p \; d\textbf{v}/dt &= \textbf{hydrodynamic force} + buoyancy \\ I_p \; d\omega/dt &= \textbf{hydrodynamic torque} \end{split}$$

 Assuming Stokes flow: hydrodynamic force = Stokes force hydrodynamic torque = Stokes (Jeffery's) torque

For a spherical object:

$$\mathbf{F}_{Stokes} = 6\pi r \mu_f (\mathbf{u} - \mathbf{v}_p)$$

First effect of fluid inertia:

$$\mathbf{F}_{Oseen} = \mathbf{F}_{Stokes} \times \left(1 + \frac{3Re_p}{16}\right) \sim \mathbf{F}_{Stokes} \text{ if } Re_p \ll 1 \quad \text{ (in practice if r << \eta)}$$

For a spheroidal object:

- * Similar correction (~ Re_p) available for translational motion (*Brenner, JFM 1961*).
- * What about rotational motion ???

Settling of spheroids in a turbulent flow: orientation distribution calculated numerically using **Stokes torque**

• Integration of the resulting set of equations for particles suspended in a turbulent flow (*Gustavsson et al, 2014; Siewert et al, 2014a,b; Gustavsson et al, 2017; Jucha et al, 2018; Naso et al, 2018*):

If W_s (settling velocity) > U_0 (fluid velocity), the orientation distribution is biased ("vertical"):

First effect of fluid inertia on the rotational motion of settling spheroids

• Experimental results:

* Lopez & Guazzelli, PRF 2017: slender rods in a 2D laminar flow → "horizontal" settling

* Klett, J. Atmos. Sci. 1995 (~spheres); Kramel, PhD 2017 (slender rods) in turbulence: → "horizontal" settling

Results opposite to those obtained by DNS in turbulent flows using Stokes approximation !

• Fluid inertia correction on rotational motion of spheroids first derived for nearly spherical objects (*Cox, JFM 1965*) and slender bodies (*Khayat & Cox, JFM 1989*), and recently for arbitrary aspect ratios (*Dabade et al, JFM 2015*).

Problem: fluid-inertia torque ~ Stokes torque !!!

This inertial correction \rightarrow "horizontal" settling.

• <u>Idea:</u> Determine the conditions under which fluid inertia can be neglected for the angular dynamics of spheroids settling in turbulence.

Angular motion of spheroids

• Angular equation of motion, in the particle frame:

 NB: Fluid inertia can also induce corrections due to shear (Candelier, Mehlig & Magnaudet, JFM 2019) and unsteadiness.

Inertial correction to the torque: confrontation with experiments and resolved DNS

Cabrera, Sheikh, Naso, Plihon, Bourgoin & Pumir, in prep., 2021

Spheroidal particles

Angular motion of spheroids

Evaluation of the ratio $|\mathbf{T}_{St}|/|\mathbf{T}_{I}|$

• For very flat disks (aspect ratio $\beta \ll 1$) and for thin rods ($5 \le \beta \le 100$):

$$|\hat{\mathbf{T}}_{I}|/|\hat{\mathbf{T}}_{St}|\sim \mathscr{R}, \text{ with } \mathscr{R}\equiv rac{u_{s}^{2}}{\nu s}$$

- $\mathbf{u}_s = \mathbf{v} \mathbf{u}$: slip velocity
- **V** : particle velocity
- ${f u}$: fluid velocity at the particle position
- S : inverse of a characteristic time scale ~ flow velocity gradients
- u : fluid viscosity

Estimating the slip velocity as $u_s \sim W_s$, where $W_s \approx g\tau_p$ is the settling velocity of the particles, and using standard estimates for evaluating the turbulent velocity gradients leads to:

$$\mathscr{R} \sim \left(\frac{W_s}{U_0}\right)^2 R e_f^{1/2}$$

 $Re_f = U_0 L / \nu$: large scale Reynolds number of the flow

Discussion of the ratio $|\mathbf{T}_{St}|/|\mathbf{T}_{I}|$

$$\mathscr{R} \sim \left(\frac{W_s}{U_0}\right)^2 R e_f^{1/2}$$

- Therefore, in the high Re_f regime, the fluid-inertia torque can be neglected (i.e., \mathscr{R} can be small) only if W_s/U_0 is small
 - \rightarrow orientation distribution nearly uniform (see *Gustavsson et al, 2017*; *Jucha et al, 2018*).
- The Stokes contribution can be neglected ($\mathscr{R} \gg 1$) simultaneously with a large ratio $W_s/U_0 \rightarrow$ biased "horizontal" distribution
- Therefore the orientation bias obtained in numerical works which neglect the fluid-inertia torque (biased "vertical" distribution) cannot be observed at large Re_f !!!

Sheikh, Gustavsson, Lopez, Lévêque, Mehlig, Pumir & Naso, JFM 2020

Numerical results in homogeneous and isotropic turbulence

- Transition from a uniform to a biased "horizontal" distribution observed at increasing \mathscr{R} .
- Biased "vertical" distribution never observed.
- Analysis seems to be valid for any β .
- NB: theory for the orientation distribution at large *R* derived in *Gustavsson et al*, NJP 2019 and *Gustavsson et al*, submitted, 2021.

Settling, orientation and collisions of ice crystals: numerical setup

 Generation of an idealized stationary, homogeneous and isotropic turbulent flow in a cubic box with periodic boundary conditions (pseudo-spectral method).

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{\nabla p}{\rho_f} + \nu \nabla^2 \mathbf{u} + \mathbf{f},$$
$$\nabla \cdot \mathbf{u} = 0,$$

• 3 values of R_{λ} (or ε) considered:

Flow	Ι	II	III
ε (cm ² /s ³)	0.976	15.62	246.4
Re_{λ}	55.8	94.6	151.2
$ au_{K}(\mathbf{s})$	0.341	0.085	0.021
T_L (s)	1.96	0.70	0.26
$u_{rms} (cm/s)$	2.18	5.72	14.4
Ν	384	768	1576

Physical parameters

• Simulations designed for representing at best realistic situations in cloud conditions. Physical parameters at T = -20 °C (*Pruppacher & Klett, 1997*).

• Parameters common to all runs:

Fluid	Ice crystals	Gravity	
$ ho_f$ (g cm ⁻³) ν (cm ² s ⁻¹) μ (g cm ⁻¹ s ⁻¹)	$ ho_i$ (g cm ⁻³) a (μ m)	$g \text{ (cm s}^{-2}\text{)}$	
1.413×10^{-3} 0.1132 1.599×10^{-4}	0.9194 150	981	

TABLE 1. Values of the physical parameters common to all runs. The fluid is moist air, whose volumetric mass, kinematic and dynamic viscosities are ρ_f , ν and μ , respectively. The density of the water droplets is ρ_l . The ellipsoidal ice crystals have a volumetric mass ρ_i and a semi-major axis *a*. The gravitational acceleration is denoted *g*.

Physical parameters

Runs	Flows	β	N_c	$T_{run}(s)$	$\langle U_s \rangle \ (cm/s)$	St	Sv	$\langle oldsymbol{arphi}^2 angle^{1/2}$	K	K^0
1	Ι	0.005	100^{3}	98	1.84	8.510^{-3}	5.13	0.049	1.210^{-4}	4.310^{-5}
2	Ι	0.01	100^{3}	112	3.08	1.710^{-2}	10.3	310^{-3}	5.910^{-5}	4.210^{-5}
3	Ι	0.02	70^{3}	126	5.48	3.410^{-2}	20.5	310^{-4}	4.910^{-5}	4.110^{-5}
4	II	0.005	100^{3}	24	2.12	3.410^{-2}	2.56	0.48	6.710^{-4}	1.610^{-4}
5	Π	0.01	70^{3}	30	3.50	6.810^{-2}	5.13	5.710^{-2}	4.210^{-4}	2.010^{-4}
6	II	0.02	70^{3}	36	5.78	0.137	10.3	510^{-3}	2.710^{-4}	3.010^{-4}
7	Π	0.05	70^{3}	31.5	11.5	0.342	25.6	510^{-3}	2.410^{-4}	8.610^{-4}
8	III	0.005	100^{3}	5.28	2.4	0.137	1.31	0.90	1.410^{-3}	1.010^{-3}
9	III	0.01	100^{3}	5.28	4.5	0.274	2.61	0.44	2.410^{-3}	1.910^{-3}
10	III	0.02	100^{3}	5.28	7.4	0.547	5.22	0.12	3.610^{-3}	4.710^{-3}

w or w/o gravity.

Translational motion of spheroids

- M_{St} , M_I : anisotropic resistance tensors, diagonal in the particle eigenframe + R : rotation matrix (particle frame \rightarrow laboratory frame)
- u: fluid velocity
 v: particle velocity

Crystal settling: orientation statistics

Broader orientation distribution at high ϵ and small β .

as a function of β , St = τ_p / τ_η (Stokes number) and Sv = $g\tau_p / u_\eta$ (settling number).

Gustavsson et al, submitted, 2021

Settling velocity

Settling velocity:

- increased by turbulence
- strongly correlated to particle orientation

Settling velocity conditioned on orientation

Two particles very close to each other may have a significant velocity difference, provided that they have different orientations \rightarrow consequences for the collision rate...

Collision kernel

$$N_c = \frac{1}{2}K \times \frac{N^2}{V} \times T$$

 N_c : number of collisions. K: collision kernel. N: number of particles. V: volume of the domain.

T: simulation time.

Pumir & Wilkinson, ARCMP 2016

- Without gravity, K increases with β and ϵ (particle inertia), ~ spheres.
- Behavior less trivial in the presence of gravity.

Collision mechanisms for settling anisotropic particles

Turbulence: tracer particles brought together by velocity gradients.

Differential settling: faster spheroids fall on slower ones.

Particle inertia: particles from different locations collide due to the « sling effect ».

Saffman & Turner, JFM 1956

Jucha et al, PRF 2018

Falkovich & Pumir, JAS 2007

Collision kernel

 $\varepsilon = 1 \text{ cm}^2/\text{s}^3$; Re_{λ} = 56 (St < 0.04)

• Saffman-Turner (K ~ 3.10⁻⁵ cm³/s; $\Delta v_r \sim a / \tau_\eta$) for $\beta \ge 0.01$.

• When $g \neq 0$, differential settling for $\beta = 0.005$.

Collision kernel

 $\epsilon = 246 \text{ cm}^2/\text{s}^3$; Re_{λ} = 150 (St = 0.1-0.6)

• Saffman-Turner ($\Delta v_r \sim a / \tau_\eta$) for $\beta = 0.005$.

• Inertial effects (St ~ 0.6) for $\beta = 0.02$.

Summary - Discussion

Take-home message (rotational motion of settling spheroids):

- In a turbulent flow, heavy spheroids can only settle either with a random orientation or preferentially horizontally. Neglecting the fluid-inertia torque may lead to wrong results !
- In laminar flows (not shown here), the three orientation regimes can be observed (uniform distribution, "vertical", "horizontal"). The limit $Re_f \rightarrow 0$ requires some care.
- Our estimates were derived for very flat disks (aspect ratio β << 1) and for thin rods (5 ≤ β ≤ 100), but our numerical results show that they are also relevant for moderate values of β.

Take-home message (settling, orientation and collisions in clouds):

- Crystals can only settle horizontally or with a random orientation.
- Their differential settling can play a crucial role on collisions. In this case, gravity can increase the collision rate (opposite behaviour in monodisperse suspensions of spheres). Three mechanisms: turbulence, differential settling, particle inertia.
- Modelling of orientation and collision (ongoing work) statistics as a function of β , St and Sv.

- Effects of fluid inertia due to shear and unsteadiness neglected.
- "Ghost collision" approximation, "one-way coupling".
- Simplified crystal geometry.

Perspectives:

- Considering prolate spheroids ($-10 \,^{\circ}\mathrm{C} \lesssim T \lesssim -5 \,^{\circ}\mathrm{C}$).
- Collisions between crystals and supercooled water droplets.
- Varying the crystals aspect ratio simultaneously with their size, so as to keep their mass constant.
- Investigating further the collision mechanisms when particle inertia is dominant.

References:

- * K. Gustavsson, J. Jucha, A. Naso, E. Lévêque, A. Pumir and B. Mehlig, Phys. Rev. Lett. 119, 254501 (2017).
- * J. Jucha, A. Naso, E. Lévêque and A. Pumir, Phys. Rev. Fluids 3, 014604 (2018).
- * A. Naso, J. Jucha, E. Lévêque and A. Pumir, J. Fluid Mech. 845, 615-641 (2018).
- * K. Gustavsson, M. Z. Sheikh, D. Lopez, A. Naso, A. Pumir and B. Mehlig, New J. Phys. 21, 083008 (2019).
- * M. Z. Sheikh, K. Gustavsson, D. Lopez, E. Lévêque, B. Mehlig, A. Pumir and A. Naso, J. Fluid Mech. 886, A9 (2020).

