in situ turbulence measurements

Turbulence in the stable atmospheric boundary layer over alpine terrain An application to katabatic winds on steep slopes

Christophe Brun

LEGI/MEIGE UGA Grenoble, France

February 19, 2025

ÉCOLE DE PHYSIQUE DES HOUCHES

New Challenges in Turbulence Research VII Turbulence in the stable atmospheric boundary layer over alpine terrain

Observatoire de

February 19, 2025

• • • • • • •

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements 000000

Innsbruck valley, February 2024-January 2025

New Challenges in Turbulence Research VII Turbulence in the stable atmospheric boundary layer over alpine terrain

< □ > < 同

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements 000000

Innsbruck valley, February 2024-January 2025

Turbulent ABL on a steep slope 000 *in situ* turbulence measurements 000000

- 1 Atmospheric Boundary Layer (ABL)
- **2** Turbulent ABL on a flat surface
- **3** Turbulent ABL on a steep slope
- *in situ* turbulence measurements

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ

Turbulent ABL on a steep slope 000 *in situ* turbulence measurements 000000

1 Atmospheric Boundary Layer (ABL)

- 2 Turbulent ABL on a flat surface
- **3** Turbulent ABL on a steep slope
- 4 *in situ* turbulence measurements

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements 000000

ABL definition

New Challenges in Turbulence Research VII Turbulence in the stable atmospheric boundary layer over alpine terrain

Turbulent ABL on a steep slope

in situ turbulence measurements

Net radiation budget at the earths surface

Diurnal cycle

- $Rn = SW_{down} SW_{up} + LW_{down} LW_{up}$
 - SW Solar radiation
 - Earth/Atmosphere radiation $LW = \epsilon \sigma T^4$
 - emissivity *c* clear sky: 0.6, clouds : 0.8, snow: 0.99
 - Stefan-Boltzmann constant $\sigma = 5.67.10^{-8} W/m^2/K^4$

Oke, Boundary layer climate (2002)_

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements 000000

ABL energy balance at the ground surface

Surface energy redistribution

 $C_s \frac{\partial T_s}{\partial t} = Rn + H_s + LE + G$

- G Conduction through soil
- *LE* Turbulent Latent heat flux with moisture $LE \approx \rho L_v \overline{w'q'}$
- H_s Turbulent sensible heat flux $H_s \approx \rho C_p \overline{w' \theta'}$

Turbulent ABL on a flat surface 00000000 Turbulent ABL on a steep slope

in situ turbulence measurements 000000

ABL energy balance at the ground surface

New Challenges in Turbulence Research VII Turbulence in the stable atmospheric boundary layer over alpine terrain

7 / 27

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements 000000

Thermodynamics

Perfect gas law for dry air

- $P = \rho R_d T$
- with $R_d = C_p C_v = 287 J.Kg^{-1}$.
- and $\gamma = \frac{C_p}{C_v} = 1.4$

Adiabatic conditions

• Entropy
$$S = \frac{P}{\rho^{\gamma}} = cst$$

• Sonic temperature
$$C = \sqrt{\gamma R_d T}$$

Hydrostatic conditions

•
$$\frac{\partial P}{\partial z} = -\rho g$$

イロト イボト イヨト イヨ

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements

ABL stability

Turbulent ABL on a steep slope

in situ turbulence measurements 000000

1 Atmospheric Boundary Layer (ABL)

2 Turbulent ABL on a flat surface

3 Turbulent ABL on a steep slope

in situ turbulence measurements

Turbulent ABL on a flat surface ○●○○○○○○○ Turbulent ABL on a steep slope $_{\rm OOO}$

in situ turbulence measurements

Base state ()_o

Background isentropic conditions at rest

• $P_o(z) = \rho_o(z) R_d T_o(z)$

•
$$\frac{\partial P_o(z)}{\partial z} = -\rho_o(z)g$$

• $S_o = \frac{P_o(z)}{\rho_o(z)^{\gamma}} = cst$

Properties

- $\theta_o(z) = Cst$
- $N_o = 0$
- $U_o = 0$

Boussinesq approximation

- $P(\vec{x}) = P_o(z) + \tilde{P}(\vec{x})$
- $\rho(\vec{x}) = \rho_o(z) + \tilde{\rho}(\vec{x})$
- $T(\vec{x}) = T_o(z) + \tilde{T}(\vec{x})$
- $\theta(\vec{x}) = \theta_o + \tilde{\theta}(\vec{x})$

buoyancy terms

• small density and temperature deviations at low Mach number

•
$$\frac{\tilde{\rho}}{\rho_o(z)} = -\frac{\tilde{T}}{T_o(z)} = -\frac{\tilde{\theta}}{\theta_o}$$

イロト イポト イヨト イヨト

э.

Navier-Stokes equations

Mass conservation

- incompressible flow
- anelastic approximation

Momentum budget

- no Coriolis effects
- ٠ Boussinesg approximation : buoyancy source term

Potential temperature budget

- dry air: no virtual temperature
- non-isentropic nature of the ABL

< 冊

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements 000000

Navier-Stokes equations

Mass conservation

$$\rho_o \frac{\partial \tilde{u}_i}{\partial x_i} + \tilde{w} \frac{\partial \rho_o}{\partial z} = 0$$

Momentum budget

$$\frac{\partial \tilde{u}_i}{\partial t} + \tilde{u}_j \frac{\partial \tilde{u}_i}{\partial x_j} + \frac{1}{\rho_o} \frac{\partial \tilde{P}}{\partial x_i} - \nu \nabla^2 \tilde{u}_i = g \frac{\tilde{\theta}}{\theta_o} \delta_{i3}$$

Potential temperature budget

$$\frac{\partial \tilde{\theta}}{\partial t} + \tilde{u}_j \frac{\partial \tilde{\theta}}{\partial x_j} - \alpha \nabla^2 \tilde{\theta} = 0$$

New Challenges in Turbulence Research VII

Turbulence in the stable atmospheric boundary layer over alpine terrain

✓ □→ < ≥ → < ≥ →
 February 19, 2025

12 / 27

Navier-Stokes equations

Mass conservation

- incompressible flow
- anelastic approximation

Momentum budget

- no Coriolis effects
- Boussinesg approximation : buoyancy source term ٠

Potential temperature budget

- dry air: no virtual temperature
- non-isentropic nature of the ABL

< 冊

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements 000000

Navier-Stokes equations

Mass conservation

$$\frac{\partial \tilde{u}_i}{\partial x_i} = 0$$

Momentum budget

$$\frac{\partial \tilde{u}_i}{\partial t} + \tilde{u}_j \frac{\partial \tilde{u}_i}{\partial x_j} + \frac{1}{\rho_o} \frac{\partial \tilde{P}}{\partial x_i} - \nu \nabla^2 \tilde{u}_i = g \frac{\tilde{\theta}}{\theta_o} \delta_{i3}$$

Potential temperature budget

$$\frac{\partial \tilde{\theta}}{\partial t} + \tilde{u}_j \frac{\partial \tilde{\theta}}{\partial x_j} - \alpha \nabla^2 \tilde{\theta} = 0$$

New Challenges in Turbulence Research VII

Turbulence in the stable atmospheric boundary layer over alpine terrain

February 19, 2025

イロト イボト イヨト イヨ

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope 000

in situ turbulence measurements

Navier-Stokes equations

Reynolds decomposition

- $\tilde{u}_i = \overline{u_i} + u'_i$
- $\tilde{P} = \overline{P} + P'$
- $\tilde{\theta} = \overline{\theta} + \theta'$

Boussinesq Hypothesis (gradient model)

- Reynolds stress tensor $\overline{u'_i u'_j} = -v_t \left(\frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right) + \frac{2}{3} \delta_{ij} e$
- Turbulent sensible heat flux $\overline{u'_{j}\theta'} = -\alpha_t \frac{\partial \overline{\theta}}{\partial x_i}$
- Turbulence Kinetic Energy $e = \frac{1}{2} \overline{u_i'^2}$
- Turbulence Potential Energy $e_p = \frac{1}{2} \frac{g}{\theta_o} \frac{\partial \overline{\theta}}{\partial z}^{-1} \overline{\theta'^2}$

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements 000000

RANS equations for ABL

Mass conservation

$$\frac{\partial \overline{u_i}}{\partial x_i} = 0$$

Momentum budget

$$\frac{\partial \overline{u_i}}{\partial t} + \overline{u_j} \frac{\partial \overline{u_i}}{\partial x_j} + \frac{1}{\rho_o} \frac{\partial \overline{P_t}}{\partial x_i} - \frac{\partial}{\partial x_j} \left((\nu + \nu_t) \frac{\partial \overline{u_i}}{\partial x_j} \right) = g \frac{\overline{\theta}}{\theta_o} \delta_{i3}$$

Potential temperature budget

$$\frac{\partial \overline{\theta}}{\partial t} + \overline{u_j} \frac{\partial \overline{\theta}}{\partial x_i} - \frac{\partial}{\partial x_i} \left((\alpha + \alpha_t) \frac{\partial \overline{\theta}}{\partial x_i} \right) = 0$$

New Challenges in Turbulence Research VII

Turbulence in the stable atmospheric boundary layer over alpine terrain

February 19, 2025

イロト イボト イヨト イヨ

14 / 27

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements 000000

energy budget in the ABL

turbulence kinetic energy budget (TKE)

turbulence potential energy budget (TPE)

(日)

Turbulent ABL on a steep slope $_{\rm OOO}$

in situ turbulence measurements

Turbulent boundary layer on a flat surface (stable conditions)

Turbulent fluxes and turbulent mixing

- $u_*^2 = -\overline{u'w'} > 0$
- $u_*\theta_* = -\overline{w'\theta'} > 0$
- Turbulent flux Richardson number $Ri_f = -\frac{P_B}{P_M} > 0$
- Monin-Obukhov length $L_{MO} = \frac{\theta_o}{g} \frac{\overline{u'w'}^{3/2}}{\overline{u'\theta'}} = \frac{\theta_o}{\kappa g} \frac{{u_*}^2}{\theta_*} = -z \frac{P_M}{P_B} > 0$
- Turbulent mixing $v_t = l_m^2 \frac{\partial \overline{u}}{\partial z}$
- Prandtl mixing length $l_m = \kappa z \left(1 \frac{z}{L_{MO}}\right)^{-1}$

イロト イポト イヨト イヨト

3

イロト イポト イヨト イヨト

Эł,

17 / 27

Prandtl mixing length model for stable/neutral ABL

 $D_t e$ TT= P_M + P_B +£ Turbulent Dissipation TKE Mechanical Buoyancy transport production

spatio-temporal variability

production

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements 000000

イロト イポト イヨト イヨト

Эł,

17 / 27

Prandtl mixing length model for stable/neutral ABL

 $D_t e$ P_M + P_B TT£ Dissipation Mechanical Buoyancy production production

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements 000000

イロト イポト イヨト イヨト

э

17 / 27

Prandtl mixing length model for stable/neutral ABL

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements 000000

イロト イポト イヨト イヨト

э

Prandtl mixing length model for stable/neutral ABL

Neutral turbulent boundary layer on a flat surface

Turbulent ABL on a flat surface 0000000●

Turbulent ABL on a steep slope

in situ turbulence measurements 000000

Monin-Obukhov similarity (stable conditions)

logarithmic law correction

• Momentum ($\alpha_m \approx 5$, z_0 aerodynamic roughness):

$$\overline{u}^{+} = \frac{\overline{u}}{u_{*}} = \frac{1}{\kappa} \ln \frac{z}{z_{0}} + \frac{\alpha_{m}}{\kappa} \frac{z}{L_{MO}}$$

• Heat ($\alpha_h \approx 5$, z_h heat roughness):

$$\overline{\theta}^{+} = \frac{\overline{\theta}}{\theta_{*}} = \frac{Pr_{t}}{\kappa} \ln \frac{z}{z_{h}} + \frac{\alpha_{h}}{\kappa} \frac{z}{L_{MO}}$$

• Turbulent Prandtl number $Pr_t = \frac{v_t}{\alpha_t} \approx 1$ Zilitinkevich et al. (QJRMS 2000)

Turbulent ABL on a steep slope $\bullet \circ \circ$

in situ turbulence measurements 000000

1 Atmospheric Boundary Layer (ABL)

- **2** Turbulent ABL on a flat surface
- **3** Turbulent ABL on a steep slope
- *in situ* turbulence measurements

(日)

in situ turbulence measurements

Process of katabatic wind formation

Night Anticyclonic conditions

- Negative radiative budget
- $R_n^{night} = LW_{down} LW_{up} < 0$

Surface temperature cooling $H_s < 0$

- Temperature gradient
- Air cooling / densification

Downslope flow

Turbulent mixing

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope ${\scriptstyle \bigcirc { \odot } }$

in situ turbulence measurements

Process of katabatic wind formation

Strong radiative cooling

• $H_s \approx \rho C_p \overline{w'\theta'} \in [-50; -100] W/m^2$

background stratification

•
$$N = \sqrt{\frac{g}{\theta_0} \frac{\partial \theta}{\partial z}} \approx 0.01 - 0.02 \text{ Hz}$$

Turbulent flow regime

•
$$Re = \frac{2g}{\nu \theta_s \sin \alpha} \frac{H_s}{N^2} \approx 10^5 - 10^6$$

Shapiro & Fedorovich (BLM 2014) Xiao & Senocak (JFM 2019)

Turbulent ABL on a steep slope 000

RANS equations for katabatic jet

boundary layer on a flat surface

Turbulent momentum flux

Katabatic forcing

Wyngaard (2010)

• • • • • • •

< 冊

Turbulent ABL on a steep slope ○○●

in situ turbulence measurements

RANS equations for katabatic jet

Turbulent ABL on a steep slope ○○●

in situ turbulence measurements 000000

RANS equations for katabatic jet

Katabatic boundary layer along a slope Charrondière et al. (BLM 2022) $\partial \overline{u}$ $\partial u' w'$ $\overline{\theta} - \theta_a$ $\sin \alpha$ $\overline{\partial t}$ Ambient stratification Inertia Advection Turbulent Katabatic forcing Gravity momentum flux Temperature Height 20-40 m Wind velocity $\frac{\partial \tilde{\theta}}{\partial t}$ $\partial w' \overline{\theta'}$ ∂z Inertia Turbulent sensible Advection heat flux z_j < 2 m $\overline{u_i} = 2.3 \text{ m/s}$ $\frac{\partial \overline{w}}{\partial t}$ Up to 10°C $\partial w'^2$ $\partial \overline{w}$ W(z) $-\cos \alpha$ U(z) ∂z θ_a u'w'<0 $\alpha = 20 - 30^{\circ}$ Inertia Turbulent Advection Katabatic forcing velocity variance

New Challenges in Turbulence Research VII

Turbulence in the stable atmospheric boundary layer over alpine terrain

February 19, 2025

21/27

Turbulent ABL on a steep slope

in situ turbulence measurements

1 Atmospheric Boundary Layer (ABL)

- **2** Turbulent ABL on a flat surface
- **3** Turbulent ABL on a steep slope
- *in situ* turbulence measurements

32

イロト イヨト イヨト

Turbulent ABL on a steep slope

in situ turbulence measurements

in situ turbulence measurements in the Alps

November 2012

- Blein phD 2016
- Brun et al. JAS 2017
- Charrondière et al. BLM 2020

April 2015

• Unpublished results

February 2019

- Charrondière et al. BLM 2022
- Charrondière et al. JFM 2022
- Charrondière et al. POF 2024

Turbulent ABL on a steep slope

in situ turbulence measurements

in situ turbulence measurements in the Alps

February 2019

• Zenodo repository 2022 DOI: 10.5281/zenodo.6546702

February 2023

• French Alps, Grenoble

January-February 2024-2025

• Austrian Alps, Innsbruck (TEAMx project)

23 / 27

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements

in situ turbulence measurements in the Alps

Winter 2019, Grenoble, 13-28 February

- 4× 2D sonic anemometers
- LW & SW radiation sensor (CNR4)
- 6× 3D sonic anemometers (CSAT/CSAT3B)
- 10 Thermocouples (FW3)
- 3D Pitot sensor (TFI): z = 2mm 900mmpressure transducers: f = 1250 Hz

Turbulent ABL on a steep slope

in situ turbulence measurements

in situ turbulence measurements in the Alps

Winter 2023, Grenoble, 3-15 February

- 2D sonic anemometer (Waissala): z = 3.5m
- LW radiation sensor (IR120): H_s , T_s
- 3D sonic anemometer (CSAT3B): z = 1m
- 4 Thermocouples (FW3): z = 0.7m, z = 1.2m, z = 2.0m, z = 2.9m
- 3D Pitot sensor (TFI): z = 2mm 900mmpressure transducers: f = 1250 Hz
- Micrometric displacement system (Rosier)

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements

▶ ∢ ≣

in situ turbulence measurements in the Alps

3D Sonic anemometry (acoustic time flight)

sampling frequency: 20 Hz measuring volume: d = 12 cm

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements

in situ turbulence measurements in the Alps

Tethered balloon: T(z), P(z), q(z)

3 / 27

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements

Experimental results

13 katabatic profiles (Grenoble February 2019)

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements

э

Experimental results

23 katabatic profiles (Grenoble February 2023)

Turbulent ABL on a steep slope

in situ turbulence measurements

Experimental results

Potential temperature 2019

• • • • • • •

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements

Experimental results

Turbulent ABL on a steep slope

in situ turbulence measurements

< 一型

Experimental results

Downslope velocity 2019

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements

Experimental results

New Challenges in Turbulence Research VII Turbulence in the stable atm

Turbulence in the stable atmospheric boundary layer over alpine terrain

Turbulent ABL on a steep slope

in situ turbulence measurements

Experimental results

LES along an ideal curved slope

Brun et al. (JAS 2017)

LES Case	$-H_{s}$ (W m ⁻²)	$N_{\rm ref}~({ m s}^{-1})$	α (°)	$z_0 (\mathrm{mm})$	$u_*^{\max}(m s^{-1})$	$\theta_*^{\max}(^{\circ}C)$
A0 (present study)	10	0.011	13-35.5	35	0.19	0.05
A1 (present study)	30	0.013	13-35.5	35	0.24	0.11
A2 (present study)	10	0.013	13-35.5	35	0.18	0.04
Skyllingstad (2003)	30	0	20	100	_	_
Axelsen and van Dop (2009b)	35-70	0.010-0.014	3-6	200	_	_
Smith and Porté-Agel (2014)	20	0.10	6–18	50	—	—

$$u_p(z_n) = V_0 \sin(z_n/L_0) e^{-z_n/L_0}$$

$$\theta_p(z_n) - \theta_{\text{ref}}(z_n) = \Theta_0 \cos(z_n/L_0) e^{-z_n/L_0}$$

Turbulent ABL on a steep slope

in situ turbulence measurements

イロト イヨト イヨト

ъ

590

Experimental results

LES vs Prandtl model

Turbulent ABL on a steep slope

▶ 4 3

э

in situ turbulence measurements

Experimental results

Normal to the slope velocity above jet max

Turbulent ABL on a steep slope

• • • • • • •

in situ turbulence measurements

Experimental results

Normal to the slope velocity below jet max

Turbulent ABL on a steep slope

in situ turbulence measurements

Momentum & heat budget

Non constant flux layer February 28, 2019 (5h00-6h36) $\frac{\partial \overline{u'w'}}{\partial z}$ 3.01 $\frac{\partial \overline{u}}{\partial t} + \overline{w} \frac{\partial \overline{u}}{\partial z} +$ $\approx -g \frac{\overline{\theta_s} - \theta_a}{\theta_a} \sin \alpha = \frac{u_*^2}{L_{Kat}}$ Denby (2000) 3D pitot Sonic anemometers 2.5 ۸ Divergence of Katabatic forcing the turbulent ۸ 2.0 momentum flux $-\overline{u'w'} = u_*^2 \left(1 - \frac{z}{L_{Kat}}\right) = \left(\kappa z \frac{\partial \overline{u}}{\partial z}\right)^2$ Ē 1.5 ۸ ۸ 1.0 0.5 0.0 -0.04 -0.03 -0.02 -0.01 0.00 0.01 $\overline{u'w'}$ [m² s⁻²]

New Challenges in Turbulence Research VII Turbulence in the stable atmospheric boundary layer over alpine terrain

Turbulent ABL on a steep slope

in situ turbulence measurements

Momentum & heat budget

Turbulent velocity profile

New Challenges in Turbulence Research VII Turbulence in the stable atmospheric boundary layer over alpine terrain Febru

25 / 27

Turbulent ABL on a steep slope

in situ turbulence measurements

Momentum & heat budget

Turbulent velocity profile

Turbulent ABL on a steep slope

in situ turbulence measurements

Momentum & heat budget

Turbulent velocity profile

Turbulent ABL on a steep slope

in situ turbulence measurements

Momentum & heat budget

Turbulent velocity profile

Turbulent ABL on a steep slope

in situ turbulence measurements

Momentum & heat budget

Surface Roughness (Schlichting)

Turbulent ABL on a steep slope

in situ turbulence measurements

Momentum & heat budget

Non constant flux layer

Turbulent temperature profile

$$\overline{\theta}^+ - \theta_s^+ = \frac{Pr_t}{\kappa} \ln \frac{z}{z_T}$$

February 14, 2023 (7h47-8h15)

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements

Momentum & heat budget

New Challenges in Turbulence Research VII Tur

Turbulence in the stable atmospheric boundary layer over alpine terrain

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements

Momentum & heat budget

Normal to the slope velocity \overline{w}

$$\overline{w}^2 = w_o^2 \left(1 - \frac{z}{L_{Kat}} \right) \frac{2}{\tan \alpha} = u_*^2 \left(1 - \frac{z}{L_{Kat}} \right)$$

New Challenges in Turbulence Research VII Turbu

Turbulence in the stable atmospheric boundary layer over alpine terrain

Turbulent ABL on a steep slope

in situ turbulence measurements

Momentum & heat budget

Momentum flux $\overline{u'w'}$

New Challenges in Turbulence Research VII

Turbulence in the stable atmospheric boundary layer over alpine terrain

25 / 27

Turbulent ABL on a steep slope

in situ turbulence measurements

Momentum & heat budget

Momentum flux $\overline{u'w'}$ vs \overline{w}^2

New Challenges in Turbulence Research VII

Turbulence in the stable atmospheric boundary layer over alpine terrain

February 19, 2025

25 / 27

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements

Energy spectra

outer layer of the katabatic jet

Charrondière et al (POF 2024)

• • • • • • •

Turbulent ABL on a flat surface

Turbulent ABL on a steep slope

in situ turbulence measurements

Energy spectra

Strong wave turbulence and Bolgiano spectra

Charrondière et al (POF 2024)

New Challenges in Turbulence Research VII Turbulence in the stable atmospheric boundary layer over alpine terrain Febru

26 / 27

Þ

Turbulent ABL on a steep slope

in situ turbulence measurements

https://legi.gricad-pages.univ-grenoble-alpes.fr/project/meige/innsbruck

New Challenges in Turbulence Research VII Turbulence in the stable atmospheric boundary layer over alpine terrain

February 19, 2025

27 / 27