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Space-Time Dependence of Correlation Functions
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Phenomenology of 3D turbulence
Kolmogorov statistical theory . . .

Kolmogorov theory 1941

A.N. Kolmogorov

Dokl.Akad.Nauk.SSSR 30, 31, 32 (1941)

dimensional analysis:

eddy size ℓ ∼ k−1

energy flux ϵ

▶ velocity v ∼ (ϵℓ)1/3

Richardson energy cascade

L (integral scale)

η (Kolmogorov scale)

injection ϵ

fl
u
x
ϵ

dissipation ϵ

Nazarenko, Lecture Notes in Physics 825 (2011)
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▶ structure functions

Sp(r) ≡
〈(

(v(r0 + r)− v(r0)) · r̂
)p〉

Sp(ℓ) = Cp ϵ
p/3 ℓp/3 (K41)

S3(ℓ) = −4
5 ϵ ℓ (exact)

▶ kinetic energy spectrum

E(k) = CK ϵ
2/3k−5/3

L-1
inertial range

η-1

Maurer,Tabeling, Zocchi EPL 26 (1994)



Phenomenology of 3D turbulence
Kolmogorov statistical theory . . . and multi-fractality

Kolmogorov theory 1941

A.N. Kolmogorov

Dokl.Akad.Nauk.SSSR 30, 31, 32 (1941)

dimensional analysis:

eddy size ℓ ∼ k−1

energy flux ϵ

▶ velocity v ∼ (ϵℓ)1/3

▶ structure functions

Sp(r) ≡
〈(

(v(r0 + r)− v(r0)) · r̂
)p〉

Sp(ℓ) = Cp ϵ
p/3 ℓp/3 (K41)

S3(ℓ) = −4
5 ϵ ℓ (exact)

numerical simulations

and experiments

Sp(ℓ) ∼ ℓζp but ζp ̸= p/3

▶ multi-fractality, intermittency
U. Frisch, Turbulence, Cambridge University Press



Phenomenology of 3D turbulence
Kolmogorov statistical theory . . .

Kolmogorov theory 1941

A.N. Kolmogorov

Dokl.Akad.Nauk.SSSR 30, 31, 32 (1941)

dimensional analysis:

eddy size ℓ ∼ k−1

energy flux ϵ

▶ decorrelation time scale

in Eulerian framework

τD ∼ ϵ−1/3k−2/3
(K41)



Phenomenology of 3D turbulence
Kolmogorov statistical theory . . . and random sweeping

Kolmogorov theory 1941

A.N. Kolmogorov

Dokl.Akad.Nauk.SSSR 30, 31, 32 (1941)

dimensional analysis:

eddy size ℓ ∼ k−1

energy flux ϵ

▶ decorrelation time scale

in Eulerian framework

τD ∼ ϵ−1/3k−2/3
(K41)

numerical simulations

and experiments

τD ∼ k−1

▶ random sweeping effect
Onsager, Z. Physik (1948), Tennekes, JFM (1975)

A. DNS results

We first use Eq. !11" to compute R!k ,!" using DNS of
isotropic turbulence. The statistics are averaged over three
realizations of the flow obtained using different initial super-
position of random Fourier modes. The parameters of the
simulations presented in this section are gathered in Table I.
In Fig. 4!a", the coefficient R!k ,!" is plotted for wave num-
bers from k=2 to k=64. As the wave number increases, the
correlation time decreases.

Under Kolmogorov’s assumptions, the eddy-turn-
over time !e!k"#$k3E!k"%−1/2 can be written as !e!k"
#!"1/3k2/3"−1. The sweeping time is simply !s!k"#!u0k"−1.
These scaling laws are plotted in Fig. 4!b" along with the
correlation time !D!k" computed using DNS. As the wave
number increases, the computed values of the correlation
time !D are much closer to the #1 slope than to the #2/3
slope. This confirms that the sweeping time scale is dominant
at high wave numbers, thus at small scales. However, the
conclusions remain unclear concerning the characteristic
time of low wave numbers. These conclusions are similar to
the ones obtained in Refs. 10, 12, and 33.

B. KS results

As presented in Sec. II B 1, one advantage of KS is that
the unsteadiness of the flow is explicitly controlled via the
arbitrary choice of a correlation frequency $n. We investigate
the two main possibilities in the isotropic case, namely, the
straining hypothesis !6" and the sweeping hypothesis !7".
Since $n is considered as a Gaussian variable, one can pilot
its mean and average by choosing specific values for the
parameters % and %!. The input and parameters of KS are
therefore the prescribed spectrum E!k" and the pair of vari-
ables % and %!. In most studies, %!=0, except Ref. 30 in
which %!=% !some papers propose another way to random-
ize $n, see, for example, Ref. 23". % is often assumed to be
close to unity, and a value around 0.5 is often encountered.
The values of % and %! investigated in the present paper can
be found in Table I.

From Eq. !4", two-time correlations are analytically
known in KS. The only source of unsteadiness in this case of
isotropic turbulence is the Gaussian variable $n so that

R!kn,!" = &e−j$n!' = exp!− 1
2$n0

2 !2" , !13"

where $n0=(%2+%!2&n is the rms value of $n. The correla-
tion time !D is then deduced as

!D =
(2'

2$n0
. !14"

In this case, time correlations depend only on the choice of %
and %!, and on the relation &n. Considering the influence of
the standard deviation on the correlation R!k ,!", we set the
value of % at an arbitrarily fixed 0.4 and we focus on the
impact of %!. The arbitrary law &!kn" is here without impor-
tance and the unsteadiness of the velocity field is then de-
rived from the straining hypothesis. Figure 5!a" presents the
time dependent coefficient R!k=16,!" for %! increasing from
0 to 1. The following results concerning the impact of %! are
independent of the wave number, and the specific choice of
k=16 is made without loss of generality.

When %!=0, each Fourier mode at a given k oscillates
with the same frequency, defined by the pseudodispersion
relation $n!kn" $Eq. !6" or Eq. !7"%. Hence, at a given wave
number, no decorrelation is observed even for long time lag
!. These oscillations are not observed in DNS in which nega-
tive loops of R!k ,!" are rare events $as in Fig. 4!a"%. Note in
addition that these oscillations vanish after integration over
all wave numbers in Eq. !11", so that the dependence on the
wave number in Eq. !11" is very important. When %!!0, the
standard deviation of $n is different from zero, the oscilla-
tions are strongly damped, and the correlation R!k ,!" rapidly
goes to zero for large time lag. This is due to the fact that, at
a given wave number, two different Fourier components can
have different frequencies. This observation supports the use
of a Gaussian variable instead of the classical deterministic
law $n!kn".

In Fig. 5!b" the same results are presented after integra-
tion over time to yield !D as a function of %!. For not too
small %!, the computed values of !D agree with the analytical
result of Eq. !14" with $n0=(%2+%!2(k3E!k", k=16, and
%=0.4. The disagreement for low values of %! is due to the

(a)

(b)

FIG. 4. Two-time correlations in isotropic DNS for run DNS 1 in Table I.
!a" Correlation function R!k ,!" as a function of ! for k! $2:64%. !b" Corre-
lation time !D as a function of the wave number k! $2:64%.
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Favier, Godeferd, Cambon, Phys. Fluids 22 (2010)



Random sweeping and space time correlations

▶ simplified model of advection Kraichnan, Phys. Fluids (1964)

velocity decomposition : v(t, x) = U+ u(t, x)

U large scale, ∼ uniform and constant, Gaussian field

u small scale, fluctuating field with |u| ≪ |U|
U and u statistically independent

advection equation : ∂tu = −(U · ∇)u

solution in Fourier space: û(t, k) = û(0, k)e−iU·kt

two-point correlation function:

C (t, k) =
〈
û(t, k) · û(0,−k)

〉
= C (0, k) exp

(
− 1

2
Urmsk

2t2
)

−→ Gaussian in tk variable
−→ decorrelation time τd ∼ U−1

rmsk
−1 ̸= k−2/3 (K41)



Random sweeping and space time correlations

▶ simplified model of advection Kraichnan, Phys. Fluids (1964)

velocity decomposition : v(t, x) = U+ u(t, x) ?
U large scale, ∼ uniform and constant, Gaussian field

u small scale, fluctuating field with |u| ≪ |U|
U and u statistically independent

advection equation : ∂tu = −(U · ∇)u ?
solution in Fourier space: û(t, k) = û(0, k)e−iU·kt

two-point correlation function:

C (t, k) =
〈
û(t, k) · û(0,−k)

〉
= C (0, k) exp

(
− 1

2
Urmsk

2t2
)

=⇒ phenomenological model, what about Navier-Stokes equation ?



Challenge: statistical theory of turbulence
from “first principles”



Statistical theory of turbulence
Why the Renormalisation Group ?

▶ many similarities between critical phenomena

and homogeneous isotropic turbulence

Nelkin, Phys. Rev. A 9 (1974), Rose, Sulem, J. de Phys. 39 (1978)

Eyink, Goldenfeld, Phys. Rev. E 50 (1994), Gawȩdzki, Nucl. Phys. B 58 (1997)

scale invariance, self-similarity
universality
anomalous critical exponents

2D Ising magnet turbulence

Renormalisation Group invented for critical phenomena

=⇒ Wilson’s RG

Wilson, Kogut, Phys. Rep. C 12 (1974)

progressive averaging of
fluctuation modes

build effective theory
at scale κ



Statistical theory of turbulence
Why the Renormalisation Group ?

▶ many similarities between critical phenomena

and homogeneous isotropic turbulence

Nelkin, Phys. Rev. A 9 (1974), Rose, Sulem, J. de Phys. 39 (1978)

Eyink, Goldenfeld, Phys. Rev. E 50 (1994), Gawȩdzki, Nucl. Phys. B 58 (1997)

scale invariance, self-similarity
universality
anomalous critical exponents

2D Ising magnet turbulence

Renormalisation Group invented for critical phenomena

scale invariance ⇐⇒ fixed point of the RG



How to achieve progressive averaging
of fluctuations modes ?

(in a smooth and rigorous way)



Path integral of stochastic equation
Martin-Siggia-Rose-Janssen-de Dominicis formalism

▶ generic Langevin equation

∂tϕ(t, x) + F [ϕ(t, x)] = η(t, x) ,

⟨η(t, x)η(t′, x′)⟩ = 2δ(t − t′)D(|x− x′|) .

▶ path integral formulation

Martin, Siggia, Rose, PRA 8 (1973), Janssen, Z. Phys. B 23 (1976), de Dominicis, J. Phys. Paris 37 (1976)

P[ϕ] =

∫
DηP[η]δ(ϕ− ϕη) =

∫
Dϕ̄ e−S[ϕ,ϕ̄]

S[ϕ, ϕ̄] =
∫
t,x

{
ϕ̄
(
∂tϕ+ F [ϕ]

)︸ ︷︷ ︸
deterministic

}
+

∫
t,x,x′

ϕ̄(t, x)D(|x− x′|)︸ ︷︷ ︸
noise

ϕ̄(t, x′)

Z[J, J̄] =

∫
DϕP[ϕ] =

∫
DϕDϕ̄ e

−S[ϕ,ϕ̄]+
∫
t,x

(
Jϕ+J̄ϕ̄

)



Functional Renormalisation Group

▶ based on Wilson’s RG ideas

progressive integration of
fluctuation modes

Effective average action Γκ
instead of effective action Sκ

▶ separation of fluctuation modes

Zκ =

∫
Dφ e−S[φ]−∆Sκ[φ]+

∫
t,x

Jφ
with ∆Sκ =

1

2

∫
q φRκ(q)φ



Functional Renormalisation Group

▶ based on Wilson’s RG ideas

progressive integration of
fluctuation modes

Effective average action Γκ
instead of effective action Sκ

▶ separation of fluctuation modes

Zκ =

∫
Dφ e−S[φ]−∆Sκ[φ]+

∫
t,x

Jφ
with ∆Sκ =

1

2

∫
q φRκ(q)φ

▶ effective average action: Legendre transform of Wκ = lnZκ

Γκ[ψ] + ∆Sκ[ψ] = −Wκ[J] +

∫
t,x

Jψ with ψ = ⟨φ⟩ = ∂Wκ
∂J

▶ exact RG equation for Γκ
Wetterich, Phys. Lett. B 301 (1993), Dupuis, et al, Phys. Rep. 910 (2021)

∂κΓκ =
1

2
Tr

∫
q

∂κRκ(q)
[
Γκ

(2)+Rκ
]−1

(−q)



Functional Renormalisation Group

▶ exact RG equation for effective average action Wetterich, Phys. Lett. B 301 (1993)

∂κΓκ =
1

2
Tr

∫
q
∂κRκ(q)

[
Γ
(2)
κ + Rκ

]−1
(−q)

▶ complementary non-pertubative and accurate approximation schemes

derivative expansion

vertex expansion
Dupuis, et al, Phys. Rep. 910 (2021)

3D Ising

ν η ω
conformal bootstrap 0.629971(4) 0.0362978(20) 0.82958(23)

FRG O(∂6) 0.63007(10) 0.03648(18) 0.832(14)∗

Monte Carlo 0.63002(10) 0.03627(10) 0.832(6)
RG 6-loop 0.6304(13) 0.0335(25) 0.799(11)

∗ : O(∂4)

Balog, Chaté, Delamotte, Wschebor, PRL 103 (2019)

3D O(4)

ν η ω
conformal bootstrap 0.7472(87) 0.0378(32) 0.817(30)

FRG O(∂4) 0.7478(9) 0.0360(12) 0.761(12)
Monte Carlo 0.7477(8) 0.0360(4) 0.765
RG 6-loop 0.741(6) 0.0350(45) 0.774(20)

de Polsi, Balog, Tissier, Wschebor, PRE 101 (2020)



Path integral representation
of stochastic Navier-Stokes equation

▶ stochastic Navier-Stokes equation

∂tvα + vβ∂βvα +
1

ρ
∂απ − ν∇ 2vα = fα with ∂αvα = 0

f: Gaussian random forcing of zero mean and covariance〈
fα(t, x)fβ(t

′, x ′)
〉
= 2δαβδ(t − t′)NL(|x− x ′|)

▶ Path integral for stochastic Navier-Stokes equation

LC, J. Fluid Mech. 950 (2022)

Z =

∫
DvDv̄DπDπ̄ e−SNS+ source terms

SNS =

∫
t,x

v̄α
[
∂tvα + vβ∂βvα +

1

ρ
∂απ − ν∇2vα

]
︸ ︷︷ ︸

deterministic

+π̄
[
∂αvα

]
︸ ︷︷ ︸
constraint

−
∫
t,x,x′

v̄α NL(|x− x′|)︸ ︷︷ ︸
noise

v̄α



Renormalisation Group
for stochastic Navier-Stokes equation

▶ Original Wilsonian RG intimately linked with the “ε-expansion”

Wilson, Kogut, The RG and the ε-expansion , Phys. Rep. C 12 (1974)

· · · but for stochastic Navier-Stokes equation

∂tvα + vβ∂βvα +
1

ρ
∂απ − ν∇ 2vα = fα with ∂αvα = 0

absence of a small expansion parameter ε!

▷ introduction of an ε via forcing covariance NL(k) ∝ kd−ε

de Dominicis, Martin, PRA 19 (1979), Fournier, Frisch, PRA 28 (1983), Yakhot, Orszag, PRL 57 (1986)

3D kinetic energy spectrum E(k) ∝ k1−2ε/3 =⇒ K41 scaling for ε→ 4!

“freezing” mechanism should occur for ε > 4 for universality

use alternative approximation scheme

within the FRG formalism



FRG fixed point for large-scale forcing

▶ RG fixed point for 3D homogeneous isotropic stationary turbulence

for a large-scale forcing

simple approximation

Tomassini, Phys. Lett. B 411 (1997), Mej́ıa-Monasterio, Muratore-Ginnaneschi, PRE 86 (2012)

LC, Delamotte, Wschebor, PRE 93 (2016), LC, J. Fluid Mech. Perspectives 950 (2022)

renormalised viscosity ν → νeff(p)
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FRG fixed point for large-scale forcing

statistical properties: universal and with K41 scaling

second-order structure function
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S2(ℓ) ∼ C2(ϵℓ)
2/3

FRG: C2 ≃ 2.06

experiments: C2 ≃ 2.0± 0.4

K.R. Sreenivasan, Phys. Fluids 7 (1995)

third-order structure function

0 1 2 3 4 5 6 7 8 9 10
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S3(ℓ) ∼ C3(ϵℓ)

FRG: C3 = −0.80
exact: C3 = −4/5

LC, J. Fluid Mech. Perspectives 950 (2022)



Time dependence of generic n-point correlation functions

▶ space-time n-point connected correlation functions

C (n)
α1...αn

({ti , xi}) ≡
〈
vα1(t1, x1) · · · vαn(tn, xn)

〉
c



Time dependence of generic n-point correlation functions

▶ space-time n-point connected correlation functions

C (n)
α1...αn

({ti , xi}) ≡
〈
vα1(t1, x1) · · · vαn(tn, xn)

〉
c

▶ exact asymptotic behaviour in the limit of all |ki | large:

C (n)
α1...αn

({ti , ki}) ∝

 exp
(
−α0

L2

τ 2

∣∣∑
ℓ kℓtℓ

∣∣2 +O(|kmax|L)
)

ti ≪ τ

exp
(
−α∞

L2

τ |t|
∑

kℓ kk · kℓ +O(|kmax|L)
)

ti ≫ τ

small times regime =⇒ random sweeping

rigorous and generalised for any n-point correlations

prediction of a new regime at large time



Presentation outline

1 Why Renormalisation Group for turbulence ?

2 Turbulence as a RG fixed point

3 Time dependence of correlation functions

4 Comparison with direct numerical simulations

5 Closure from symmetries



Comparison with Direct Numerical Simulations

3D homogeneous isotropic incompressible flow

large-scale random forcing

all scales resolved down to kmaxη ≃ 1.5

▶ computation of space-time correlations

▷ spatial average
over spherical shells (isotropy)

Numerical computation of correlation functions

 / 2916

Two-point correlation function

Local product of velocity 
fields at two time instants 

(point by point) 

∑
i

ûi(t0, k)ûi(t0 + t, − k)

field kept in 
memory

computed at 
last iteration

Spatial averaging 
over spherical shells 


(isotropy)

• Averaging  is in space and time

• Computation during the run

• parallel execution for post-processing

⟨ . . . ⟩

C(2) (t, k) = ∑
i

⟨ ̂ui(t0, k) ̂ui(t0 + t, − k)⟩

no-overlap windows

t0 t0+Tw t0+2Tw
t

E(K,t)

Time averaging 
over time windows in stationary state

Tw

Δt=0 Δt=0 Δt

C2(K,Δt)

▷ temporal average
over separate time windows

in the stationary state

Numerical computation of correlation functions

 / 2916

Two-point correlation function

Local product of velocity 
fields at two time instants 

(point by point) 

∑
i

ûi(t0, k)ûi(t0 + t, − k)

field kept in 
memory

computed at 
last iteration

Spatial averaging 
over spherical shells 


(isotropy)

• Averaging  is in space and time

• Computation during the run

• parallel execution for post-processing

⟨ . . . ⟩

C(2) (t, k) = ∑
i

⟨ ̂ui(t0, k) ̂ui(t0 + t, − k)⟩

no-overlap windows

t0 t0+Tw t0+2Tw
t

E(K,t)

Time averaging 
over time windows in stationary state

Tw

Δt=0 Δt=0 Δt

C2(K,Δt)
Gorbunova, Balarac, LC, Eyink, Rossetto, Phys. Fluids 33 (2021)



Two-point correlation function at large wave numbers
Small time delays: random sweeping effect

▶ result from functional renormalisation group (FRG):

C (t, k) = C (0, k) exp
(
− α0 (L/τ)

2 (kt)2
)

︸ ︷︷ ︸
Gaussian in kt

▶ results from direct numerical simulations (DNS):

0 0,05 0,1

t / τ

0

0,2

0,4

0,6

0,8

1

C
(t

,k
) 

/ 
C

(0
,k

)

kL=37,1
kL=65,3
kL=93,4
kL=123,1
kL=151,2
kL=180,9

k ↑



Two-point correlation function at large wave numbers
Small time delays: random sweeping effect

▶ result from functional renormalisation group (FRG):

C (t, k) = C (0, k) exp
(
− α0 (L/τ)

2 (kt)2
)

︸ ︷︷ ︸
Gaussian in kt

=⇒ C (t, k)/C (0, k) should collapse onto a single Gaussian against kt

▶ results from direct numerical simulations (DNS):

0 0,05 0,1

t / τ

0

0,2

0,4

0,6

0,8

1

C
(t

,k
) 

/ 
C

(0
,k

)

kL=37,1
kL=65,3
kL=93,4
kL=123,1
kL=151,2
kL=180,9

k ↑
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kL=93,4
kL=123,1
kL=151,2
kL=180,9



Two-point correlation function at large wave numbers
Small time delays: random sweeping effect

▶ result from functional renormalisation group (FRG):

C (t, k) = C (0, k) exp
(
− α0 (L/τ)

2 (kt)2
)

︸ ︷︷ ︸
Gaussian in kt

▷ decorrelation time τD

from Gaussian fit
exp(−(t/τD)

2)

from FRG:

τD = (
√
α0(L/τ)k)

−1

similar to

Favier, Cambon et al, Phys. Fluids 22 (2010)
10

1
10

2
10

3

kL

10
-3

10
-2

10
-1

τ
D

 / 
τ R

λ
=40

R
λ
=60

R
λ
=90

R
λ
=160

R
λ
=250

k
-2/3

k
-1

implies frequency spectrum E (ω) ∼ ω−5/3

Chevillard, Roux, Leveque, Mordant, Pinton, Arneodo, PRL 95 (2005).



Three-point correlation function at large wave numbers
Small time delays

▶ advection-velocity correlation function from FRG

T (t, k) = −iknP
⊥
ℓm

∑
k′

C
(3)
mnℓ(t, k

′, t, k− k′)
∣∣∣
large k′

∝ exp
(
−α0(L/τ)

2|k|2t2
)

▶ results from direct numerical simulations
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Three-point correlation function at large wave numbers
Small time delays

▶ advection-velocity correlation function from FRG

T (t, k) = −iknP
⊥
ℓm

∑
k′

C
(3)
mnℓ(t, k

′, t, k− k′)
∣∣∣
large k′

∝ exp
(
−α0(L/τ)

2|k|2t2
)

▶ results from direct numerical simulations
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=⇒ same coefficient α0 as for two-point function
Gorbunova, Balarac, LC, Eyink, Rossetto, Phys. Fluids 33 (2021)



What about large time delays ?

C (t, k) = C (0, k) exp
(
− α∞ (L2/τ) k2|t|

)
︸ ︷︷ ︸

exponential in k2t

▶ hard to observe in DNS

of Navier-Stokes flow

Large-time regime of decorrelation

• Low amplitudes of correlations


• Sensitivity to amount of data for averaging, 
numerical errors (oscillations)


• Needs longer runs  
(few integral times)


• Needs bigger computational domain  
(few integral lengths)


• Needs more computational resources


Switch to passive scalar turbulence →

 / 2920

FRG prediction: C(2)(t, k) ∼ exp [−αLU2
rmsτ0k2 | t |], | t | ≫ τ0

Remains unreachable. Possible issues:

3.2. Two-point space-time velocity correlation function

Dependence on the Reynolds number. The plateau values of ↵S in the Fig. 3.3b
appear to be dependent on the Reynolds number. This dependence is displayed in Fig. 3.4,
showing that ↵S grows non-linearly with the Reynolds number. From the FRG analysis,
discussed in Sec. 1.2.2, it follows that the value of ↵S is not universal, as it depends on the
particular choice of the forcing profile.

In the presented simulations, the forcing location and its width have the same values
in all simulations, although the spatial resolution and the amplitude of forcing vary with
the Reynolds number. The influence of the forcing profile on the decorrelation parameter
↵S has not been investigated in the present work.

Deviation from the Gaussian at larger time delays. Although the analysis of the
correlation functions at small time lags allows to see clearly the Gaussian decay and the
sweeping time scale, the analysis of the correlation curves at larger time lags is a much
more difficult problem. As it was shown in the Fig. 3.2b, with increasing time lags, the
correlation curves start deviating from the Gaussian fits and oscillate around zero. These
oscillations impede a straightforward analysis of the correlation behavior at large time
lags. The presence of oscillations can be attributed to the lack of data in the numerical
averaging of the correlation functions. Another difficulty that complicates the analysis is
the low level of the signal of the correlation functions at large time lags, which makes the
results more sensitive to numerical errors and the averaging procedure.

Figure 3.5 – Illustration of the deviation from the Gaussian fit at larger time lags. The thin
continuous lines represent the numerically computed C(2) from the simulation at R� = 90.
The thick lines indicate the portion of the curves where the deviation from the Gaussian fit
becomes larger than 10%. The dotted lines correspond to the Gaussian fit, the dashed lines
to the exponential fit of the highlighted portions of the curves.

The Fig. 3.5 displays the same data points as Fig. 3.2, with thin continuous lines
representing the numerical data and thick lines highlighting a portion of the curve where
the relative deviation from the Gaussian fit is more than 10% and the magnitude of the
correlation function is larger than 0.5% the initial magnitude at t = 0 (the second cut-off is
needed to exclude the oscillating part from the analysis). This portion of the data points,
where the curves start deviating from the Gaussian, can be fitted with a linear function in
the y-logarithmic scaling, therefore, the correlation function decays approximately as an
exponential in this range. It is important to mention that such a portion of data points in
the correlation function is not found for some wavenumbers k, as some correlation curves
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▶ experiment of turbulence air jet

but correlations of modulus

Poulain, Mazellier, Chevillard, Gagne, Baudet,

Eur. Phys. J. B 53 (2006)



Passively advected scalars in turbulent flows

▶ diffusion-advection equation

∂tθ + v · ∇θ − κ∇2θ = f

v synthetic random field Kraichnan, Phys. Fluids 11 (1968)〈
v̂i (t, k)v̂j(t

′,−k)
〉
= P⊥

ij (k)
D0

kd+ε
Tτ (t − t ′)

©Walter Baxter

τ : finite correlation time, Kraichnan limit Tτ (t − t ′)
τ→0−→ δ(t − t ′)

rough smooth



Correlations in time-correlated Kraichnan model

▶ result from functional renormalisation group

Cθ(t, k) ∝

 exp
(
− γ0(L/τ)

2 (tk)2
)

|t| ≪ τ

exp
(
− γ∞(L2/τ) |t| k2

)
|t| ≫ τ

Pagani and LC

Phys. Fluids 33 (2021)



Correlations in time-correlated Kraichnan model

▶ result from functional renormalisation group

Cθ(t, k) ∝

 exp
(
− γ0(L/τ)

2 (tk)2
)

|t| ≪ τ

exp
(
− γ∞(L2/τ) |t| k2

)
|t| ≫ τ

Pagani and LC

Phys. Fluids 33 (2021)

▶ results from direct numerical simulations
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2 t
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Gorbunova, Pagani, Balarac, LC, Rossetto, Phys. Rev. F 6 (2021)



Correlations in delta-correlated Kraichnan model τ → 0

▶ result from functional renormalisation group (FRG)

Cθ(t, k) = Cθ(0, k) exp
(
−κrenk2|t|

)
κren = κ+

d − 1

2d

∫
k

D0

(k2 +m2)(d+ε)/2
ddk︸ ︷︷ ︸

determined by velocity only

exponential decay
for all times

exact expression for κren

Pagani and LC, Phys. Fluids 33 (2021)

similar to eg Kraichnan, PRL 72 (1994), Mitra, Pandit, PRL 95 (2005)



Correlations in delta-correlated Kraichnan model τ → 0

▶ result from functional renormalisation group (FRG)

Cθ(t, k) ∝ exp
(
−κrenk2|t|

)
, κren = κ+

1

3

∫
k

D0

(k2 +m2)(3+ε)/2
d3k

▶ results from direct numerical simulations (DNS)
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Correlations in delta-correlated Kraichnan model τ → 0

▶ result from functional renormalisation group (FRG)

Cθ(t, k) ∝ exp
(
−κrenk2|t|

)
, κren = κ+

1

3

∫
k

D0

(k2 +m2)(3+ε)/2
d3k

▶ results from direct numerical simulations (DNS)
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Presentation outline

1 Why Renormalisation Group for turbulence ?

2 Turbulence as a RG fixed point

3 Time dependence of correlation functions

4 Comparison with direct numerical simulations

5 Closure from symmetries



Key ingredient for closure:
Extended symmetries and Ward identities

▶ extended symmetry: infinitesimal transformation such that

the variation of S is linear in the fields

=⇒ yields exact functional Ward identities:

δΓ[ψ, ψ̄] = δS[φ, φ̄]
∣∣∣
ψ=⟨φ⟩,ψ̄=⟨φ̄⟩

▶ infinite set of exact identities for vertices

Γ
(m,n)
α1···αm+n

(t1, x1, · · · , tm+n, xm+n) =
δm+nΓ

δψα1 (t1, x1) · · ·︸ ︷︷ ︸ δψ̄αm+1 (tm+1, xm+1) · · ·︸ ︷︷ ︸
m ψ n ψ̄{

Γ
(m,n)
α1···αm+n

}
⇐⇒

{
C

(m,n)
α1...αm+n

}



Extended symmetries and Ward identities
of the Navier-Stokes action

time-gauged Galilean invariance: G =

{
x → x+ ϵ⃗ (t)
v → v − ∂t ϵ⃗ (t)

infinite set of exact Ward identities for all vertices with q = 0 on a u

Γ
(m+1,n)
αα1···αn+m(ω,q = 0; {νi ,pi}) = Dα(ω)Γ(m,n)α1···αn+m({νi ,pi})

[Dα(ω) shift operator]

time-gauged shift symmetry: R =

{
δv̄α(t, x) = ϵ̄α(t)
δπ̄(t, x) = vβ(t, x)ϵ̄β(t)

◦ not identified yet! LC, B. Delamotte, N. Wschebor, Phys. Rev. E 91 (2015)

infinite set of exact Ward identities for all vertices with q = 0 on a ū

Γ
(m,n)
α1···αm+n(ν1,p1, · · · , νm+1,q = 0, · · · ) = 0



Space-time correlations from
Functional Renormalisation Group

▶ space-time n-point connected correlation functions

C (n)
α1...αn

({ti , xi}) ≡
〈
vα1(t1, x1) · · · vαn(tn, xn)

〉
c

▶ exact (but infinite hierarchy of) FRG flow equations for C (n)

derived from flow equation for generating functional Wκ = lnZκ

∂κWκ =−
1

2
Tr

∫
tx ,ty ,x,y

∂κ[Rκ]αβ(x− y)
{ δ2Wκ

δjα(tx , x)δjβ(ty , y)
+

δWκ

δjα(tx , x)

δWκ

δjβ(ty , y)

}
Polchinski, Nucl. Phys. B 231 (1984), Wetterich, Phys. Lett. B 301 (1993)



Exact closure in the large wave-number limit

▶ flow for C
(n)
α1...αn ({ti , xi}) ≡

〈
vα1 (t1, x1) · · · vαn (tn, xn)

〉
c

exact (but infinite hierarchy of) flow



Exact closure in the large wave-number limit

▶ flow for C
(n)
α1...αn ({ti , xi}) ≡

〈
vα1 (t1, x1) · · · vαn (tn, xn)

〉
c

large ki

exact (but infinite hierarchy of) flow asymptotic flow at large wavenumber

(1) large wave-number expansion: all |ki | and
∣∣∣∑i ki

∣∣∣ ≫ κ

▷ ∂κRκ(q) : |q| ≲ κ =⇒ |q⃗| ≪ |k⃗i |

=⇒ set q⃗ = 0 in all vertices

asymptotically exact for |ki | ≫ κ ∼ L−1 and in a scaling regime

Blaizot, Wschebor, Mendez-Galain, Phys. Lett B 832 (2006), Tarpin, LC, Wschebor, Phys. Fluids 30 (2018)



Exact closure in the large wave-number limit

▶ flow for C
(n)
α1...αn ({ti , xi}) ≡

〈
vα1 (t1, x1) · · · vαn (tn, xn)

〉
c

large ki

exact (but infinite hierarchy of) flow asymptotic flow at large wavenumber

extended symmetries

closed flow at large wavenumber

with K(2)({ωi , ki}) =
∫
ω J(ω)DαDα and J(ω) =

∫
q κ∂̃κC

(2)
κ (ω, q)

(2) Ward identities related to extended symmetries
time-gauged Galilee

time-gauged response shift

infinite set of exact Ward identities for all vertices with a q = 0



Exact closure in the large wave-number limit

▶ kernel: K(2)({ωi , ki}) =
∫
ω J(ω)DµDµ with J(ω) =

∫
q κ∂̃κC

(2)
κ (ω, q)

▶ Fourier inverse in real time:

K(2)({ti , ki}) =
∫
ω

J(ω)
∑
k,ℓ

k⃗k · k⃗ℓ
ω2

(
e iω(tk−tℓ) − e iωtk − e−iωtℓ + 1

)
▶ at a fixed point, in the small and large time limits:

K(2)({t̂i , k̂i})
t̂i≪1−→ I ∗0

∣∣∑
ℓ

k̂ℓt̂ℓ
∣∣2

K(2)({ti , ki})
t̂i≫1−→ I ∗∞

∑
k,ℓ

k⃗k · k⃗ℓ
(
|tk |+ |tℓ| − |tℓ − tk |

)
Tarpin, LC, Wschebor, Phys. Fluids 30, 055102 (2018)



Exact closure in the large wave-number limit

▶ flow for C
(n)
α1...αn ({ti , xi}) ≡

〈
vα1 (t1, x1) · · · vαn (tn, xn)

〉
c

large ki

exact (but infinite hierarchy of) flow asymptotic flow at large wavenumber

extended symmetries

closed flow at large wavenumber

fixed point

analytical solution

C (n)
α1...αn

({ti , xi}) = C (n)
α1...αn

({0, xi}) × dominant term

(3) solution at the fixed point

C (n)
α1...αn

({ti , ki}) ∝

 exp
(
−α0

L2

τ2

∣∣∑
ℓ kℓtℓ

∣∣2 + O(|kmax|L)
)

ti ≪ τ

exp
(
−α∞ L2

τ
|t|

∑
kℓ kk · kℓ + O(|kmax|L)

)
ti ≫ τ

M. Tarpin, LC, N. Wschebor, Phys. Fluids 30 (2018), LC, J. Fluid Mech. Perspectives 950 (2022)



Interpretation of the two regimes of decorrelation

single-particle dispersion

▶ Lagrangian mean-square displacement〈
|r(t)|2

〉
∼

{
U2
rmst

2 |t| ≪ τ0 ballistic transport
2D|t| |t| ≫ τ0 diffusive transport

Taylor, Proc. Lond. Math. Soc. 2 (1922)
R ∝

√
Dt

D: eddy diffusivity

▶ Eulerian correlation function of scalars

C (t, k) ∼ exp
(
− 1

2
k2
〈
|r(t)|2

〉)
∼

 exp
(
− 1

2U
2
rmsk

2t2
)

|t| ≪ τ0

exp
(
− Dk2|t|

)
|t| ≫ τ0

Kraichnan, Phys. Fluids 7 (1964)

=⇒ similar to FRG results !

C (t, k) ∼
{

Gaussian in kt |t| ≪ τ0
exponential in k2t |t| ≫ τ0



Summary

FRG fixed point for turbulence

fixed point for large-scale forcing

effective viscosity and forcing amplitude

=⇒ K41 scaling for simple approximation
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time dependence of n-point correlations at large p

exact closure of FRG equations
based on extended symmetries

=⇒ small times: exp(−α0(kt)
2)

=⇒ large times: exp(−α∞k2|t|)



New fixed point for Burgers-KPZ equation

▶ one-dimensional Burgers equation with stochastic force

∂tv + λv∂xv = ν∂2xv +
√
D∂x f

▶ decorrelation time from the two-point function C (t, k): τ1/2 ∼ k−z

Inviscid Burgers: z = 1
(ν = 0)

Kardar-Parisi-Zhang: z = 3/2

Edwards-Wilkinson: z = 2
(λ = 0)

unexplained

scaling regime!

Cartes, T., Pandit, Brachet

Phil. Trans. A 380 (2022)



New fixed point for Burgers-KPZ equation

▶ one-dimensional Burgers equation with stochastic force

∂tv + λv∂xv = ν∂2xv +
√
D∂x f

▶ decorrelation time from the two-point function C (t, k): τ1/2 ∼ k−z

Inviscid Burgers: z = 1
(ν = 0)

Kardar-Parisi-Zhang: z = 3/2

Edwards-Wilkinson: z = 2
(λ = 0)

unexplained

scaling regime!

Cartes, T., Pandit, Brachet

Phil. Trans. A 380 (2022)

new fixed point of the

Burger-KPZ equation

Fontaine, Vercesi, Brachet, LC, PRL 131 (2023)

Gosteva, Tarpin, Wschebor, LC, PRE 110 (2024) ●
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Intermittency corrections in shell models

▶ toy model for turbulence: Sabra shell model

▷ scalar velocity modes vn(t) ∈ C on discrete shells kn = k0λn
dvn

dt
=Bn [v, v

∗]−νk2n vn + fn

Bn [v, v
∗] =i

[
akn+1vn+2v

∗
n+1 + bknvn+1v

∗
n−1 − ckn−1vn−1vn−2

]
▷ features intermittency similar to NS turbulence

L’vov, Podivilov, Pomyalov, Procaccia, Vandembroucq, PRE 58 (1998)



Intermittency corrections in shell models

▶ toy model for turbulence: Sabra shell model

▷ scalar velocity modes vn(t) ∈ C on discrete shells kn = k0λn
dvn

dt
=Bn [v, v

∗]−νk2n vn + fn

Bn [v, v
∗] =i

[
akn+1vn+2v

∗
n+1 + bknvn+1v

∗
n−1 − ckn−1vn−1vn−2

]
▷ features intermittency similar to NS turbulence

L’vov, Podivilov, Pomyalov, Procaccia, Vandembroucq, PRE 58 (1998)

▶ FRG: fixed point in inverse RG flow with anomalous exponents

RG flow from large to small scales
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exponent for S2

ζK41
2 = 2/3

ζFRG
2 ≃ 0.74± 0.03

ζDNS
2 ≃ 0.720± 0.008

Fontaine, Tarpin, Bouchet, LC, SciPost Phys. 15 (2023)



LPMMC

Thank you for your attention !
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