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Why? → MHD

Dynamo action:

Self-generation of a Magnetic field
in a moving conducting fluid

Driving force: Convection, coriolis, propellers...
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Why? → The experiment

We decided to analyze these slow dynamics experimentally...

⇒von Kármán flow in a closed cylinder
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[1/5] Motivation: Why?
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Why? → The experiment
Fundamental and applied research:

MHD interest (Dynamo action)

Applied research: Mixing problems.

Turbulence "test bench"

Homogeneous / Isotropic vs. Inhomogeneous / anisotropic:

Lagrangian vs. Eulerian statistics

Structure functions,...
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[2/5] Experimental setup: Where?
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Water Experiment

Experimental setup:

H

D y
z

yD x

Cylindrical volume
D = 0.1−0.4m, H = 0.1−0.5m

Two counter rotating impellers

Frequency: f = 1−20Hz ← fluctuations below 1!
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Water Experiment

PIV (spatial evolution) ⇔ LDA (temporal evolution)

spatial resolution ↑ temporal resolution ↑
temporal resolution ↓ spatial resolution ↓
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Expected flow characteristics

The mean flow recovers all the symmetries??

Anisotropic and very slow fluctuations?
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Expected flow characteristics

Power spectrum??

Here we will focus on the slow behaviour
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Large Re: Flow Visualization

Re = 2.5 105

De la Torre, Burguete, PRL 99 (2007) 054101
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Large Re: Flow Visualization

Re = 2.5 105
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Power spectrum

Many different time scales below the injection scale.
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Power spectrum

We can stablish three diferent ranges:
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Power spectrum

We will start with the range of very low frequencies:

10-4 10-3 10-2 10-1 100 101 102 103
102

103

104

105

106

107

108

109

1010

Frequency (Hz)

Po
w

er

Propeller Frequency

Vortex Azymutal
Rotation Frequency

 Vortex Motion 
Time Scale

N-S Inversions 
Time Scale

- 2

- 5
3

- 1
3

Injection
FrequencyLow 

Frequencies
Very Low 

Frequencies
Large 

Frequencies

12



NCTR3, Les Houches, March 18th, 2014

[3/5] Very Slow Regime
Reversals and Mean Flow Dynamics
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Large Re: Two possible solutions

Measured velocity flow (Re = 3 105)
Time averaged →Not symmetric around z = 0!
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Large Re: Two possible solutions

Measured velocity flow (Re = 3 105)
Time averaged →Here, the shear layer is around z =−20!
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Large Re: Two possible solutions

This behavior appears only if the stability is better than 0.1 %.

With a random fluctuation of 1-2%, a fast dynamics appears
between both solutions and a “symmetric” flow is recovered!!
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Large Re: Two possible solutions

Reversals also present in Rayleigh Bénard convection:

Univ. Twente, D. Lohse group
14
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Large Re: Two possible solutions

Re = 2.5 105; fN,S =±7.76Hz; ∆ = fN− fS
fN+ fS

= 0

“Symmetric behaviour”, both states are visited
Turbulence rate (100%

De la Torre, Burguete, PRL 99 (2007) 054101
14
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Large Re: Two possible solutions

Histograms:

Same shape for both states
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Large Re: Two possible solutions

Actually, this shape is due to another dynamics with another
time-scaling,...
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Large Re: Two possible solutions

...and two gaussians are distinguished inside each state.

-1.5 -1 -0.5 0 0.5 1
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Velocity (m/s)

PD
F

pN,S(uθ) =
A0√
2πσ0

exp
(

− u2
θ

2σ2
0

)

+
AN,S√
2πσN,S

exp

(

− (uθ−uN,S)
2

2σ2
N,S

)

14

[3/5] Very Slow Regime

NCTR3, Les Houches, March 18th, 2014

Large Re: Two possible solutions

Escape times (Kramer’s escape rate):
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Large Re: Two possible solutions

Experimental Amplitudes:

AN ,AS and A0

R
el

at
iv

e 
Am

pi
tu

de
s 

(a
.u

.) 

0 0.8 1.6
0.0

0.2

0.4

0.6

0.8

1.0

2.4 4.8

AN,S

A0

0.4 1.2
Re ( x10  )5

De la Torre, Burguete, PRL 99 (2007) 054101

14

[3/5] Very Slow Regime

NCTR3, Les Houches, March 18th, 2014

Large Re: Two possible solutions

Toy model: three well potential with additive noise

u̇θ = εuθ +gu3
θ −u5

θ +κ∆+
√

2Bξ(t)

where B is the noise level (“turbulence rate”)
and χ(t) is a noise distribution

N S N
S

S
N

!  !  !  

Three fixed points: [0,±u0]
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Large Re: Two possible solutions

Model results:
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Large Re: Two possible solutions

Model results:

ε
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Hysteresis
Predicts hysteresis ⇒ recovered on the experiment!

∆ = fN− fS
fN+ fS

=+0.0017 ∆ = fN− fS
fN+ fS

=−0.0017

⇓ ⇓
South state wins!! North State wins!!

Burguete and de la Torre, IJBC 19 (2009) 2695
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Hysteresis

Escape time vs. ∆
(North and South states have different residence times)
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Hysteresis

Escape time vs. ∆
(North and South states have different residence times)
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Coloured Noise
Two wells + Colour noise → 3 states

P. Hanggi, P. Jung, Adv. Chem. Phys. Volume LXXXIX, John Wiley & Sons (1995).
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Susceptibility to Simmetry breaking

I(t) =
1

V

∫
V

ruθ(t)

πR2 f
dv

χ =
∂Ī

∂∆

∣

∣

∣

∣

∆=0

P.-P. Cortet, A. Chiffaudel, F. Daviaud, and B. Dubrulle, Phys Rev Lett 105 (2010) 214501
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Susceptibility to Simmetry breaking

P.-P. Cortet, A. Chiffaudel, F. Daviaud, and B. Dubrulle, Phys Rev Lett 105 (2010) 214501
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[4/5] Slow Regime
Torque transmision
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Power spectrum

Now we move into the intermediate range:
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Large Re: Equatorial Vortices
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Mean flow destabilization

Torque transmission:

z0

z  + !z0

∂t〈LV (z0)〉=
[∫

V
∂t〈L〉dV

]

=

[∫
V

ρ〈rvz∂zvθ〉dV

]

z0

=

=
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A

ρ〈ruθuz〉dA+
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A
ρrUθUzdA

]

z0+∆z/2

−

−
[∫

A
ρ〈ruθuz〉dA+

∫
A

ρrUθUzdA

]

z0−∆z/2
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Mean flow destabilization

Torque transmission:

z0

z  + !z0

Contributions from mean flow
and fast and low frequencies
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Mean flow destabilization

Co-spectrum → uθuz
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Mean flow destabilization

And the spatial behaviour? → PIV
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Mean flow destabilization

Dimensional analysis:

∂tL
2
V ∼

∫
V

2r2vθvz∂zvθdV

⇒ εL ∝ L2(L3/T 3)/L = L4/T 3

L2
V =

∫
L2

F(k)dk

⇒ L2
F(k)∝ ε

2/3
L k−7/3

EV = L2
V/IV

⇒ E(k)∝ R −2ε
2/3
L k−7/3
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Mean flow destabilization
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2/3
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Spatial spectra
↓
two cascades

M. Lopez-Caballero, J. Burguete,

PRL 110, 124501 (2013)
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Power spectrum

...and the inertial range:

10-4 10-3 10-2 10-1 100 101 102 103
102

103

104

105

106

107

108

109

1010

Frequency (Hz)

Po
w

er

Propeller Frequency

Vortex Azymutal
Rotation Frequency

 Vortex Motion 
Time Scale

N-S Inversions 
Time Scale

- 2

- 5
3

- 1
3

Injection
FrequencyLow 

Frequencies
Very Low 

Frequencies
Large 

Frequencies

22

... and the Inertial Range!!

NCTR3, Les Houches, March 18th, 2014

Inertial range

From PIV measurements of the velocity flow we can determine:

For a Re = 1.75105

• Integral scale LI = 15 mm
→ on the order of the interblade spacing

• Dissipative scale η = 30 µm

• Energy dissipation rate ε = 1.1 W/kg

• Taylor microscale= 1.8 mm

• Reλ = 900

...and many other characteristics of the turbulent fluctuations
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[5/5] A cute couple:
FIONA and SHREK
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To infinity and beyond!! .... Re = 108!

Flow Instability Observation usiNg Anemometers

on the

Superfluid High REynolds
von Kármán facility

at SBT / CEA-Grenoble / France

SHREK facility was developped as a joint effort by:
SBT, CEA-Grenoble; Intitut Néel, CNRS, Grenoble;
SPEC, CEA-Saclay; ENS-Lyon, Lyon;
LEGI, U. Joseph Fourier, Grenoble;

France
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To infinity and beyond!! .... Re = 108!

Flow Instability Observation usiNg Anemometers

on the

Superfluid High REynolds
von Kármán facility

at SBT / CEA-Grenoble / France

FIONA & SHREK
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To infinity and beyond!! .... Re = 108!

Some numbers...

Temperature [K] 2.3 1.9
Kinematic viscosity [m2/s] 210−8 9.4310−9

Frequency [Hz] 2 1
Velocity (prop rim) [m/s] 4.8 2.4
Reynolds number Re 9.6107 108
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To infinity and beyond!! .... Re = 108!

2000 l of fluid He (normal or superfluid) experiment: 1.8 ↔ 3K
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To infinity and beyond!! .... Re = 108!

2000 l of fluid He (normal or superfluid) experiment: 1.8 ↔ 3K
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[BONUS] MHD
Effects on the Dynamo Action
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Problem formulation

Governing Equations (MHD approx.):

∂!B

∂t
+(!u ·∇)!B =

(

!B ·∇
)

!u+η∇2!B

∂!u

∂t
+(!u ·∇)!u =−

1

ρ
∇p+ν∇2!u+

1

ρµ0

(

∇×!B
)

×!B+!Fext

∇ ·!u = 0 ∇ ·!B = 0

Adimensional numbers:

Rm =
UL

η
=ULµ0σ Re =

UL

ν
Pm =

Rm

Re
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Problem formulation

Governing Equations (MHD approx.):

∂!B

∂t
+(!u ·∇)!B =

(

!B ·∇
)

!u+η∇2!B

∂!u

∂t
+(!u ·∇)!u =−

1

ρ
∇p+ν∇2!u+

1

ρµ0

(

∇×!B
)

×!B+!Fext

∇ ·!u = 0 ∇ ·!B = 0

Adimensional numbers:

But, ν 0 η for most neutral conducting fluids ⇒ Re 1 Rm
⇒Fully developped turbulence !

Typically, ν ∼ 10−5η, so for a Rm = 100 we need a Re = 107!
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Dynamo Experiments

Homogeneous dynamos:

von Kármán Sodium (Cylindrical geometry)
(CEA Saclay + CEA Cadarache + ENS Paris + ENS Lyon)
→ Successful!! PRL 98 (2007) 044502 (Iron propellers)
→ Unsuccessful with stainless steel propellers
University of Wisconsin (Spherical geometry)
University of Maryland (Spherical geometry )
University of Perm (Toroidal geometry)
New Mexico (TC dynamo)
Others
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Our approach

1st Step:

Below the dynamo threshold (!B = 0), the conducting fluid is
equivalent to any other fluid with similar hydrodynamic properties

⇒ We use a water experiment to determine!u:

∂!u

∂t
+(!u ·∇)!u =−

1

ρ
∇p+ν∇2!u +

1

ρµ0

(

∇×!B
)

×!B+!Fext

2nd Step:
We analyze the effect of this flow numerically in a kinematic code:

∂!B

∂t
= ∇×

(

!u×!B
)

+η∇2!B
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Kinematic dynamo

∂!B

∂t
= ∇×

(

!u×!B
)

+η∇2!B

The usual “weak” aproximation:

• Axisymmetric, stationary flow
(preserving the equatorial symmetry).
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Kinematic dynamo

∂!B

∂t
= ∇×

(

!u×!B
)

+η∇2!B

The usual “weak” aproximation:

• Axisymmetric, stationary flow
(preserving the equatorial symmetry).

Here, we will consider:

(a) Axisymmetric, but with two symmetric solutions
and “periodic” reversals (very low frequencies)

(b) Non-axisymmetric flows, without reversals
(low frequencies)

31



[BONUS] MHD

NCTR3, Les Houches, March 18th, 2014

Kinematic dynamo

Pseudo-spectral code:
Finite differences in r and Fourier in θ,z

!B(!s, t) = ∑
n,m

!bn,m(r)exp [i(mθ+n2πz/H)]

Rm definition: Rm = max{U(r,θ,z)}R/η

Magnetic energy growth rates:

Em,n = eσm,nt

We only considere the symmetric part:
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Effect on the dynamo threshold

(a) Equatorial symmetry broken:

Slowly evolving axisymmetric flows:

!Vω(t)= !VS+Amod
!VD cos(ωt)=

!VN + !VS

2
+Amod

!VN − !VS

2
cos(ωt)

VN and VS are the velocity fields where the N or S side
dominates. (In the following, Amod = 1)

For example, for t = 0:
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Effect on the dynamo threshold

Rm definition used:

Rm = max
0≤t<T

{Vω(t)}R/η

Magnetic energy growth rates:

Em,n = eσn,m(t)t

⇓

〈σn,m〉=
1

T

∫
T= 2π

ω

σn,m(t)dt > 0

De la Torre, Burguete, EPJ-ST 146 (2007) pp. 313-320

33

[BONUS] MHD

NCTR3, Les Houches, March 18th, 2014

Effect on the dynamo threshold

Time-dependent velocity field:
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Effect on the dynamo threshold

Growth rates vs. the frequency
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Effect on the dynamo threshold

(b) MHD analysis of real 3D flows (equatorial vortices):

Large scales can be very important→ vortices
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Effect on the dynamo threshold

(b) MHD analysis of real 3D flows (equatorial vortices):
(3D kinematic dynamo)

PRE 87 (2013) (accepted) A. Giesecke, F. Stefani, J. Burguete
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Effect on the dynamo threshold

(b) MHD analysis of real 3D flows (equatorial vortices):
(3D kinematic dynamo)

ẍ+ω2
0(1+2εcos(ω̃ t))x = 0
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Conclusions

Main characteristics of this flow:

Re ( 105−6

Turbulence rate: 50-100%
Broken symmetries: Non-stationary,

Non axisymmetric (actually, m≥ 2)
Equatorial symmetry is broken (two mirrored states)

Random reversals
Inverse cascade due to angular momentum transport

Different Time scales:

Dissipation ∼ 10−5s
Injection ∼ 0.1s
Vortex motion ∼ 10s
North – South inversion dynamics ∼ 103s
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Conclusions

These turbulent flows have very slow dynamics

Symmetry breakings (equatorial and axisymmetry),

Vortices

Random inversions→ simple model

many involved time-scales...

The dynamo threshold is very sensitive to the fluid flow
(kinematic approach)

Strong resonances appear for small windows of Upol/Utor.

Equatorial vortices and reversals can help or destroy the
dynamo depending on their respective time-scales.
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