Slow dynamics of turbulent flows in a von Kármán experiment

Javier Burguete

Departamento de Física y Matemática Aplicada

Universidad de Navarra

javier@unav.es http://fisica.unav.es/mhd/

NCTR3, Les Houches, March 18th, 2014

Outline

- [1/5] Why?
- [2/5] Where? The experiment
- [3/5] The very slow regime
- [4/5] The slow regime
- [5/5] FIONA and SHREK

[1/5] Motivation: Why?

Why? \rightarrow Turbulence

Large structures are ubiquous in turbulent flows:

NCTR3, Les Houches, March 18th, 2014

5

[1/5] Motivation: Why?

Why? \rightarrow Turbulence

Large structures are ubiquous in turbulent flows:

Why? \rightarrow Turbulence

Large structures are ubiquous in turbulent flows:

THE PHYSICS OF FLUIDS

VOLUME 10, NUMBER 7

JULY 1967

Inertial Ranges in Two-Dimensional Turbulence

ROBERT H. KRAICHNAN Peterborough, New Hampshire (Received 1 February 1967)

Two-dimensional turbulence has both kinetic energy and mean-square vorticity as inviscid constants of motion. Consequently it admits two formal inertial ranges, $E(k) \sim e^{i t k - i t}$ and $E(k) \sim e^{i t t}$ where ϵ is the rate of cascade of kinetic energy per unit mass, η is the rate of cascade of means vorticity, and the kinetic energy per unit mass is $\int_0^{\infty} E(k) dk$. The $-\delta$ range is former backward energy cascade, from higher to lower wavenumbers k, The -3 range gives an upward vorticity flow and zero-energy flow resolved by the irreducibly triangular nature of the elementary way -3 range gives a nonlocal cascade and consequently must be menergy is fed in at a constant rate to a band of wavenumbers $\sim k$, it is conjectured that a quasi-steady-state results with a $-\frac{6}{2}$ many is range pushes to ever-lower k, until scales the size of the energy energy dissipation by viscosity decreases to zero if kinetic parameters unchanged.

NCTR3, Les Houches, March 18th, 2014

[1/5] Motivation: Why?

Dynamo action:

Self-generation of a Magnetic field in a moving conducting fluid

Driving force: Convection, coriolis, propellers...

[1/5] Motivation: Why?

Why? \rightarrow Earth's magnetic field

[1/5] Motivation: Why?

Why? \rightarrow Earth's magnetic field

Why? \rightarrow The experiment

We decided to analyze these slow dynamics experimentally...

\Rightarrow von Kármán flow in a closed cylinder

NCTR3, Les Houches, March 18th, 2014

[1/5] Motivation: Why?

Why? \rightarrow The experiment

Fundamental and applied research:

- MHD interest (Dynamo action)
- Applied research: Mixing problems.

Turbulence "test bench"

- Homogeneous / Isotropic vs. Inhomogeneous / anisotropic:
- Lagrangian vs. Eulerian statistics
- Structure functions,...

[2/5] Experimental setup: Where?

Water Experiment

Experimental setup:

- Cylindrical volume D = 0.1 - 0.4 m, H = 0.1 - 0.5 m
- Two counter rotating impellers
- Frequency: f = 1 20Hz \leftarrow fluctuations below 1%

PIV (spatial evolution) \Leftrightarrow LDA (temporal evolution)

NCTR3, Les Houches, March 18th, 2014

[2/5] Experimental setup: Where?

Water Experiment

θ d

spatial resolution 1 temporal resolution \downarrow

temporal resolution \uparrow spatial resolution \downarrow

Expected flow characteristics

The mean flow recovers all the symmetries??

Anisotropic and very slow fluctuations?

NCTR3, Les Houches, March 18th, 2014

10

[2/5] Experimental setup: Where?

Expected flow characteristics

Power spectrum??

Here we will focus on the slow behaviour

[2/5] Experimental setup: Where?

Large *Re*: Flow Visualization

 $Re = 2.5 \ 10^5$

De la Torre, Burguete, PRL 99 (2007) 054101

NCTR3, Les Houches, March 18th, 2014

[2/5] Experimental setup: Where?

Large Re: Flow Visualization

 $Re = 2.5 \ 10^5$

De la Torre, Burguete, PRL 99 (2007) 054101

NCTR3, Les Houches, March 18th, 2014

[2/5] Experimental setup: Where?

Large Re: Flow Visualization

 $Re = 2.5 \ 10^5$

De la Torre, Burguete, PRL 99 (2007) 054101

NCTR3, Les Houches, March 18th, 2014

[2/5] Experimental setup: Where?

Large Re: Flow Visualization

 $Re = 2.5 \ 10^5$

Large *Re*: Flow Visualization

 $Re = 2.5 \ 10^5$

NCTR3, Les Houches, March 18th, 2014

11

[2/5] Experimental setup: Where?

Power spectrum

Many different time scales below the injection scale.

[2/5] Experimental setup: Where?

Power spectrum

We can stablish three diferent ranges:

NCTR3, Les Houches, March 18th, 2014

12

[2/5] Experimental setup: Where?

Power spectrum

We will start with the range of very low frequencies:

[3/5] Very Slow Regime Reversals and Mean Flow Dynamics

NCTR3, Les Houches, March 18th, 2014

[3/5] Very Slow Regime

Large *Re*: Two possible solutions

Measured velocity flow ($Re = 3 \ 10^5$) Time averaged \rightarrow Not symmetric around z = 0!

Measured velocity flow ($Re = 3 \ 10^5$) Time averaged \rightarrow Here, the shear layer is around z = -20!

NCTR3, Les Houches, March 18th, 2014

14

[3/5] Very Slow Regime

Large *Re*: Two possible solutions

This behavior appears **only** if the stability is better than 0.1 %.

With a random fluctuation of 1-2%, a fast dynamics appears between both solutions and a "symmetric" flow is recovered!!

Reversals also present in Rayleigh Bénard convection:

Univ. Twente, D. Lohse group

NCTR3, Les Houches, March 18th, 2014

[3/5] Very Slow Regime

Large *Re*: Two possible solutions

 $Re = 2.5 \ 10^5$; $f_{N,S} = \pm 7.76 Hz$; $\Delta = \frac{f_N - f_S}{f_N + f_S} = 0$

NCTR3, Les Houches, March 18th, 2014

Histograms:

Same shape for both states

NCTR3, Les Houches, March 18th, 2014

14

[3/5] Very Slow Regime

Large *Re*: Two possible solutions

Actually, this shape is due to another dynamics with another time-scaling,...

...and two gaussians are distinguished inside each state.

[3/5] Very Slow Regime

Large *Re*: Two possible solutions

Escape times (Kramer's escape rate):

Experimental Amplitudes:

De la Torre, Burguete, PRL 99 (2007) 054101

NCTR3, Les Houches, March 18th, 2014

[3/5] Very Slow Regime

Large *Re*: Two possible solutions

Toy model: three well potential with additive noise

$$\dot{u}_{\theta} = \varepsilon u_{\theta} + g u_{\theta}^3 - u_{\theta}^5 + \kappa \Delta + \sqrt{2B} \xi(t)$$

where *B* is the noise level ("turbulence rate") and $\chi(t)$ is a noise distribution

Τ4

Model results:

De la Torre, Burguete, PRL 99 (2007) 054101

NCTR3, Les Houches, March 18th, 2014

[3/5] Very Slow Regime

Large *Re*: Two possible solutions

Model results:

De la Torre, Burguete, PRL 99 (2007) 054101

Hysteresis

Predicts hysteresis \Rightarrow recovered on the experiment!

[3/5] Very Slow Regime

Escape time *vs*. Δ (North and South states have different residence times)

Burguete and de la Torre, IJBC 19 (2009) 2695

Hysteresis

Burguete and de la Torre, JJBC 19 (2009) 2695 NOTRS, Les Houches, March 18(h, 2014

15

[3/5] Very Slow Regime

Coloured Noise

Two wells + Colour noise \rightarrow 3 states

Figure 6.1. The double-well potential [Eq. (6.3)] is shown in normalized coordinates.

P. Hanggi, P. Jung, Adv. Chem. Phys. Volume LXXXIX, John Wiley & Sons (1995).

Coloured Noise

Two wells + Colour noise \rightarrow 3 states

P. Hanggi, P. Jung, Adv. Chem. Phys. Volume LXXXIX, John Wiley & Sons (1995).

NCTR3, Les Houches, March 18th, 2014

[3/5] Very Slow Regime

Susceptibility to Simmetry breaking

P.-P. Cortet, A. Chiffaudel, F. Daviaud, and B. Dubrulle, Phys Rev Lett 105 (2010) 214501

Susceptibility to Simmetry breaking

P.-P. Cortet, A. Chiffaudel, F. Daviaud, and B. Dubrulle, Phys Rev Lett 105 (2010) 214501

NCTR3, Les Houches, March 18th, 2014

17

[4/5] Slow Regime Torque transmision

Power spectrum

Now we move into the intermediate range:

NCTR3, Les Houches, March 18th, 2014

19

[4/5] Slow Regime

Large Re: Equatorial Vortices

Mean flow destabilization

Torque transmission:

NCTR3, Les Houches, March 18th, 2014

[4/5] Slow Regime

Mean flow destabilization

Torque transmission:

-2 z (cm) -1 0

NCTR3, Les Houches, March 18th, 2014

Mean flow destabilization

NCTR3, Les Houches, March 18th, 2014

[4/5] Slow Regime

Mean flow destabilization

And the spatial behaviour? \rightarrow PIV

Mean flow destabilization

Dimensional analysis:

$$\begin{aligned} \partial_t \mathcal{L}_V^2 &\sim \int_V 2r^2 v_{\theta} v_z \partial_z v_{\theta} dV \\ &\Rightarrow \qquad \epsilon_L \propto L^2 (L^3/T^3)/L = L^4/T^3 \\ \mathcal{L}_V^2 &= \int \mathcal{L}_F^2(k) dk \\ &\Rightarrow \qquad \mathcal{L}_F^2(k) \propto \epsilon_L^{2/3} k^{-7/3} \\ \mathcal{E}_V &= \mathcal{L}_V^2/I_V \\ &\Rightarrow \qquad \mathcal{E}(k) \propto \mathcal{R}^{-2} \epsilon_L^{2/3} k^{-7/3} \end{aligned}$$

NCTR3, Les Houches, March 18th, 2014

21

[4/5] Slow Regime

Mean flow destabilization

Dimensional analysis: $\mathcal{E}(k) \sim I^{-1} \epsilon_L^{2/3} k^{-7/3}$

M. Lopez-Caballero, J. Burguete, PRL 110, 124501 (2013)

Power spectrum

...and the inertial range:

NCTR3, Les Houches, March 18th, 2014

22

... and the Inertial Range!!

Inertial range

From PIV measurements of the velocity flow we can determine:

For a $Re = 1.75 \, 10^5$

- Integral scale $L_I = 15 \text{ mm}$ \rightarrow on the order of the interblade spacing
- Dissipative scale $\eta = 30 \ \mu m$
- Energy dissipation rate $\epsilon = 1.1 \text{ W/kg}$
- Taylor microscale= 1.8 mm
- $Re_{\lambda} = 900$

... and many other characteristics of the turbulent fluctuations

[5/5] A cute couple: FIONA and SHREK

NCTR3, Les Houches, March 18th, 2014

[5/5] Fiona and Shrek

To infinity and beyond!! $Re = 10^8$!

Flow Instability Observation usiNg Anemometers

on the

Superfluid High REynolds von Kármán facility

at SBT / CEA-Grenoble / France

SHREK facility was developped as a joint effort by:
SBT, CEA-Grenoble; Intitut Néel, CNRS, Grenoble;
SPEC, CEA-Saclay; ENS-Lyon, Lyon;
LEGI, U. Joseph Fourier, Grenoble;

France

[5/5] Fiona and Shrek

To infinity and beyond!! $Re = 10^8$!

Flow Instability Observation usiNg Anemometers

on the

Superfluid High REynolds von Kármán facility

at SBT / CEA-Grenoble / France

FIONA & SHREK

NCTR3, Les Houches, March 18th, 2014

[5/5] Fiona and Shrek

To infinity and beyond!! $Re = 10^8$!

Some numbers...

Temperature [K]	2.3	1.9
Kinematic viscosity [m ² /s]	210^{-8}	9.4310 ⁻⁹
Frequency [Hz]	2	1
Velocity (prop rim) [m/s]	4.8	2.4
Reynolds number Re	9.610 ⁷	108

To infinity and beyond!! $Re = 10^8$!

2000 I of fluid He (normal or superfluid) experiment: $1.8 \leftrightarrow 3K$

NCTR3, Les Houches, March 18th, 2014

[5/5] Fiona and Shrek

To infinity and beyond!! $Re = 10^8$!

2000 I of fluid He (normal or superfluid) experiment: 1.8 \leftrightarrow 3K

To infinity and beyond!! $Re = 10^8$!

2000 I of fluid He (normal or superfluid) experiment: $1.8 \leftrightarrow 3K$

NCTR3, Les Houches, March 18th, 2014

[5/5] Fiona and Shrek

To infinity and beyond!! $Re = 10^8$!

2000 I of fluid He (normal or superfluid) experiment: 1.8 \leftrightarrow 3K

To infinity and beyond!! $Re = 10^8$!

2000 I of fluid He (normal or superfluid) experiment: $1.8 \leftrightarrow 3K$

NCTR3, Les Houches, March 18th, 2014

[5/5] Fiona and Shrek

To infinity and beyond!! $Re = 10^8$!

2000 I of fluid He (normal or superfluid) experiment: 1.8 \leftrightarrow 3K

[5/5] Fiona and Shrek

To infinity and beyond!! $Re = 10^8$!

2000 I of fluid He (normal or superfluid) experiment: $1.8 \leftrightarrow 3K$

NCTR3, Les Houches, March 18th, 2014

[BONUS] MHD Effects on the Dynamo Action

Problem formulation

Governing Equations (MHD approx.):

$$\frac{\partial \vec{B}}{\partial t} + (\vec{u} \cdot \nabla) \vec{B} = \left(\vec{B} \cdot \nabla\right) \vec{u} + \eta \nabla^2 \vec{B}$$

$$\frac{\partial \vec{u}}{\partial t} + \left(\vec{u} \cdot \nabla\right) \vec{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{u} + \frac{1}{\rho \mu_0} \left(\nabla \times \vec{B}\right) \times \vec{B} + \vec{F}_{ext}$$

$$\nabla \cdot \vec{u} = 0 \qquad \nabla \cdot \vec{B} = 0$$

Adimensional numbers:

$$Rm = \frac{UL}{\eta} = UL\mu_0\sigma$$
 $Re = \frac{UL}{\nu}$ $Pm = \frac{Rm}{Re}$

NCTR3, Les Houches, March 18th, 2014

[BONUS] MHD

Problem formulation

Governing Equations (MHD approx.):

$$\frac{\partial \vec{B}}{\partial t} + (\vec{u} \cdot \nabla) \vec{B} = \left(\vec{B} \cdot \nabla\right) \vec{u} + \eta \nabla^2 \vec{B}$$

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{u} + \frac{1}{\rho \mu_0} \left(\nabla \times \vec{B} \right) \times \vec{B} + \vec{F}_{ext}$$

$$\nabla \cdot \vec{u} = 0 \qquad \nabla \cdot \vec{B} = 0$$

Adimensional numbers:

But, $\nu \ll \eta$ for most neutral conducting fluids $\Rightarrow Re \gg Rm$ \Rightarrow Fully developped turbulence !

Typically, $v \sim 10^{-5} \eta$, so for a Rm = 100 we need a $Re = 10^{7}!$

NCTR3, Les Houches, March 18th, 2014

28

Dynamo Experiments

Homogeneous dynamos:

- von Kármán Sodium (Cylindrical geometry) (CEA Saclay + CEA Cadarache + ENS Paris + ENS Lyon) → Successful!! PRL 98 (2007) 044502 (Iron propellers) → Unsuccessful with stainless steel propellers
 University of Wisconsin (Spherical geometry)
- University of Maryland (Spherical geometry)
- University of Perm (Toroidal geometry)
- New Mexico (TC dynamo)
- Others

NCTR3, Les Houches, March 18th, 2014

[BONUS] MHD

Our approach

1st Step:

Below the dynamo threshold ($\vec{B} = 0$), the conducting fluid is equivalent to any other fluid with similar hydrodynamic properties \Rightarrow We use a water experiment to determine \vec{u} :

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{u} + \frac{1}{\rho \mu_0} \left(\nabla \times \vec{B} \right) \times \vec{B} + \vec{F}_{ext}$$

2nd Step:

We analyze the effect of this flow numerically in a kinematic code:

$$\frac{\partial \vec{B}}{\partial t} = \nabla \times \left(\vec{\boldsymbol{u}} \times \vec{B}\right) + \eta \nabla^2 \vec{B}$$

Kinematic dynamo

$$\frac{\partial \vec{B}}{\partial t} = \nabla \times \left(\vec{u} \times \vec{B}\right) + \eta \nabla^2 \vec{B}$$

The usual "weak" aproximation:

• Axisymmetric, stationary flow (preserving the equatorial symmetry).

NCTR3, Les Houches, March 18th, 2014

[BONUS] MHD

Kinematic dynamo

$$\frac{\partial \vec{B}}{\partial t} = \nabla \times \left(\vec{\boldsymbol{u}} \times \vec{B}\right) + \eta \nabla^2 \vec{B}$$

The usual "weak" aproximation:

 Axisymmetric, stationary flow (preserving the equatorial symmetry).

Here, we will consider:

- (a) Axisymmetric, but with two symmetric solutions and "periodic" reversals (very low frequencies)
- (b) Non-axisymmetric flows, without reversals (low frequencies)

Kinematic dynamo

Pseudo-spectral code:
 Finite differences in *r* and Fourier in θ, *z*

$$\vec{B}(\vec{s},t) = \sum_{n,m} \vec{b}_{n,m}(r) \exp\left[i(m\theta + n2\pi z/H)\right]$$

- Refinition: $Rm = \max \{U(r, \theta, z)\} R/\eta$
- Magnetic energy growth rates:

$$E_{m,n}=e^{\mathbf{\sigma}_{m,n}t}$$

We only considere the symmetric part:

NCTR3, Les Houches, March 18th, 2014

[BONUS] MHD

Effect on the dynamo threshold

- (a) Equatorial symmetry broken:
 - Slowly evolving axisymmetric flows:

$$\vec{V}_{\omega}(t) = \vec{V}_{S} + \mathcal{A}_{mod}\vec{V}_{D}\cos\left(\omega t\right) = \frac{\vec{V}_{N} + \vec{V}_{S}}{2} + \mathcal{A}_{mod}\frac{\vec{V}_{N} - \vec{V}_{S}}{2}\cos\left(\omega t\right)$$

 V_N and V_S are the velocity fields where the *N* or *S* side dominates. (In the following, $\mathcal{A}_{mod} = 1$)

Effect on the dynamo threshold

Rm definition used:

$$Rm = \max_{0 \le t < T} \left\{ V_{\omega}(t) \right\} R / \eta$$

Magnetic energy growth rates:

NCTR3, Les Houches, March 18th, 2014

[BONUS] MHD

Effect on the dynamo threshold

Time-dependent velocity field:

Effect on the dynamo threshold

Growth rates *vs*. the frequency

NCTR3, Les Houches, March 18th, 2014

33

[BONUS] MHD

Effect on the dynamo threshold

(b) MHD analysis of real 3D flows (equatorial vortices):

- Large scales can be very important \rightarrow vortices

Effect on the dynamo threshold

(b) MHD analysis of real 3D flows (equatorial vortices):

(3D kinematic dynamo)

PRE 87 (2013) (accepted) A. Giesecke, F. Stefani, J. Burguete

NCTR3, Les Houches, March 18th, 2014

33

[BONUS] MHD

Effect on the dynamo threshold

(b) MHD analysis of real 3D flows (equatorial vortices):

(3D kinematic dynamo)

 $\ddot{x} + \omega_0^2 (1 + 2\varepsilon \cos(\tilde{\omega}t)) x = 0$

Conclusions

Main characteristics of this flow:

- $\blacksquare Re \simeq 10^{5-6}$
- Turbulence rate: 50-100%
- Broken symmetries: Non-stationary, Non axisymmetric (actually, $m \ge 2$) Equatorial symmetry is broken (two mirrored states)
- Random reversals
- Inverse cascade due to angular momentum transport

Different Time scales:

Dissipation	$\sim 10^{-5}$ s
Injection	~ 0.1 s
Vortex motion	$\sim 10 { m s}$
North – South inversion dynamics	$\sim 10^3$ s

NCTR3, Les Houches, March 18th, 2014

Conclusions

These turbulent flows have very slow dynamics

- Symmetry breakings (equatorial and axisymmetry),
- Vortices
- Random inversions→ simple model
- many involved time-scales...

The dynamo threshold is **very sensitive** to the fluid flow (kinematic approach)

- Strong resonances appear for small windows of U_{pol}/U_{tor} .
- Equatorial vortices and reversals can help or destroy the dynamo depending on their respective time-scales.