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[1/5] Motivation: Why?
Why? — Turbulence

Large structures are ubiquous in turbulent flows:
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[1/5] Motivation: Why?
Why? — Turbulence

Large structures are ubiquous in turbulent flows:

THE PHYSICS OF FLUIDS VOLUME 10, NUMBER 7 JULY 1967

Inertial Ranges in Two-Dimensional Turbulence

RoerT H. KRAICHNAN

Peterborough, New Hampshire
(Received 1 February 1967)

Two-dimensional turbulence has both kinetic energy and mean-square vorticity as inviseic
of motion, Consequently it admits two formal inertial ranges, (k) ~ &3k55 and I/}
where e is the rate of cascade of kinetic energy per unit mass, » is the rate of casend
vorticity, and the kinetic energy per unit mass is [®E(k) dk. The —5 o
backward energy cascade, from higher to lower wavepumbers £,
The —3 range gives an upward vorticity flow and zero-energy flos
resolved by the irreducibly triangular nature of the elementary wav
—3 range gives a nonlocal cascade and consequently must be
energy is fed in at a constant rate to a band of wavenumber
it is conjectured that a quasi-steady-state results with
k > ki, up to the viscous eutoff. The total kinetic
range pushes to ever-lower k, until scales the sz
energy dissipation by viscosity decreases to =
parameters unchanged.
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[1/5] Motivation: Why?

Why? — MHD

Dynamo action:

Self-generation of a Magnetic field
in @ moving conducting fluid

Driving force: Convection, coriolis, propellers...
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[1/5] Motivation: Why?

Why? — Earth’s magnetic field
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[1/5] Motivation: Why?

Why? — Earth’s magnetic field
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[1/5] Motivation: Why?
Why? — The experiment

We decided to analyze these slow dynamics experimentally...

—von Karman flow in a closed cylinder
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[1/5] Motivation: Why?

Why? — The experiment

Fundamental and applied research:
MHD interest (Dynamo action)
Applied research: Mixing problems.

Turbulence "test bench"
Homogeneous / Isotropic vs. Inhomogeneous / anisotropic:
Lagrangian vs. Eulerian statistics
Structure functions,...
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[2/5] Experimental setup: Where?

Water Experiment

Experimental setup:

Cylindrical volume
D=0.1-04m, H=0.1—-0.5m

Two counter rotating impellers
Frequency: f =1 —20Hz < fluctuations below 1%
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[2/5] Experimental setup: Where?

Water Experiment

PIV (spatial evolution) < LDA (temporal evolution)

spatial resolution 1 temporal resolution 1
temporal resolution | spatial resolution |
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[2/5] Experimental setup: Where?

Expected flow characteristics

The mean flow recovers all the symmetries??

Anisotropic and very slow fluctuations?
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[2/5] Experimental setup: Where?

Expected flow characteristics

Power spectrum??

Injection frequency

Inertial range (-5/3)

Power spectrum

Dissipation
range

Frequency (Hz)

< >

Here we will focus on the slow behaviour
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[2/5] Experimental setup: Where?

Large Re: Flow Visualization

Re=2510°

De la Torre, Burguete, PRL 99 (2007) 054101
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[2/5] Experimental setup: Where?

Large Re: Flow Visualization

Re=2510°

Vel Axial

STD Axial
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[2/5] Experimental setup: Where?

Large Re: Flow Visualization

Re=2510°
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[2/5] Experimental setup: Where?

Power spectrum

Many different time scales below the injection scale.
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[2/5] Experimental setup: Where?

Power spectrum

We can stablish three diferent ranges:
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[2/5] Experimental setup: Where?
We will start with the range of very low frequencies:
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[3/5] Very Slow Regime
Reversals and Mean Flow Dynamics
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[3/5] Very Slow Regime

Large Re: Two possible solutions

Measured velocity flow (Re = 3 10°)
Time averaged —Not symmetric around z = 0!

100

SN
- ///////////‘*\\\ N
VW1t r 177/ /7777

Pvrtettt it rtrrs. .

RN AN

&
S

90|
////////

L

EREE

RN

PEUVUNAANNNNN NN

Sl
o711

AR
S/

80[
70}

60|

\\\\\\\

r (mm)

501

401

P e C
R
o L

~ = —— = — —

30

AR T S 7711

NANRSNS——

-

N~ - = — = —

e - - —————

AAOOOOSSNT
N

201

1o <

[

0
-100 -80

100

90

80
70
—_
€
S
= 50
-
40

30

20

10

0
-100 -80 -60 -40 -20 40 60 80 100

0 20
z (mm)

NCTRS3, Les Houches, March 18th, 2014



[3/5] Very Slow Regime

Large Re: Two possible solutions

Measured velocity flow (Re = 3 10°)
Time averaged —Here, the shear layer is around z = —20!
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[3/5] Very Slow Regime

Large Re: Two possible solutions

This behavior appears only if the stability is better than 0.1 %.

With a random fluctuation of 1-2%, a fast dynamics appears
between both solutions and a “symmetric” flow is recovered!!
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[3/5] Very Slow Regime

Large Re: Two possible solutions

Reversals also present in Rayleigh Bénard convection:

Univ. Twente, D. Lohse group

NCTRS3, Les Houches, March 18th, 2014

[3/5] Very Slow Regime

Large Re: Two possible solutions

Re=2.510%; fy s = +7.76Hz; A= -5 =0

Instantaneous velocity (m/s)

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

“Symmetric behaviour”, both states are visited

Turbulence rate ~100%

De la Torre, Burguete, PRL 99 (2007) 054101
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[3/5] Very Slow Regime

Large Re: Two possible solutions

Histograms:
Same shape for both states

Histogram

Instantaneous velocity (m/s)
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[3/5] Very Slow Regime

Large Re: Two possible solutions

Actually, this shape is due to another dynamics with another
time-scaling,...
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[3/5] Very Slow Regime

Large Re: Two possible solutions

...and two gaussians are distinguished inside each state.
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[3/5] Very Slow Regime

Large Re: Two possible solutions

Escape times (Kramer’s escape rate):
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[3/5] Very Slow Regime

Large Re: Two possible solutions

Experimental Amplitudes:
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[3/5] Very Slow Regime

Large Re: Two possible solutions

Toy model: three well potential with additive noise

tig = Eug + guy — uy + KA+ V2BE(t)

where B is the noise level (“turbulence rate”)
and x(¢) is a noise distribution

A A A

Three fixed points: [0, u|
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[3/5] Very Slow Regime

Large Re: Two possible solutions

Model results:
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[3/5] Very Slow Regime

Large Re: Two possible solutions

Model results:
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[3/5] Very Slow Regime
Hysteresis

Predicts hysteresis = recovered on the experiment!
_ IN—fs _
A= WTh = +0.0017

A=t — —0.0017

‘/\ ~
South state wins!! North State wins!!
Burguete and de la Torre, [IUJBC 19 (2009) 2695
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[3/5] Very Slow Regime

Hysteresis

Escape time vs. A
(North and South states have different residence times)
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[3/5] Very Slow Regime
Hysteresis

Escape time vs. A
(North and South states have different residence times)
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[3/5] Very Slow Regime

Coloured Noise

Two wells + Colour noise — 3 states

V{x)

AV=1/4
/ Figure 6,1. The double-well poten-

tial [Eq. (6.3)] is shown in normalized
coordinates.

P. Hanggi, P. Jung, Adv. Chem. Phys. Volume LXXXIX, John Wiley & Sons (1995).
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[3/5] Very Slow Regime

Coloured Noise
Two wells + Colour noise — 3 states
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[3/5] Very Slow Regime

Susceptibility to Simmetry breaking

P.-P. Cortet, A. Chiffaudel, F. Daviaud, and B. Dubrulle, Phys Rev Lett 105 (2010) 214501
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[3/5] Very Slow Regime

Susceptibility to Simmetry breaking
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[4/5] Slow Regime
Torque transmision
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[4/5] Slow Regime

Power spectrum

Now we move into the intermediate range:
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[4/5] Slow Regime

Large Re: Equatorial Vortices
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[4/5] Slow Regime

Mean flow destabilization

Torque transmission:
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[4/5] Slow Regime

Mean flow destabilization

Torque transmission: o
Contributions from mean flow

and fast and low frequencies
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[4/5] Slow Regime

Mean flow destabilization
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[4/5] Slow Regime

Mean flow destabilization

And the spatial behaviour? — PIV
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[4/5] Slow Regime

Mean flow destabilization

Dimensional analysis:

0, L ~ / 2r?vev,0,vedV
\%

= e, o L*(L3/T3)/L=L*/T>

= L2(k) o2k
Ey = L‘%/IV
N E(k) o R 2 2/3k—7/3
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[4/5] Slow Regime

Mean flow destabilization

Dimensional analysis: E(k) ~ I~! 2/3k 7/3
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Power spectrum

...and the inertial range:
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... and the Inertial Range!!

Inertial range

From PIV measurements of the velocity flow we can determine:

ForaRe=1.7510°

e Integral scale L; = 15 mm
— on the order of the interblade spacing

e Dissipative scale 1 = 30 um

e Energy dissipation rate € = 1.1 W/kg
e Taylor microscale= 1.8 mm

® Re; =900

...and many other characteristics of the turbulent fluctuations

NCTR3, Les Houches, March 18th, 2014
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[5/5] A cute couple:
FIONA and SHREK
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[5/5] Fiona and Shrek

To infinity and beyond!! .... Re = 10°!

Flow Instability Observation usiNg Anemometers

on the

Superfluid High REynolds
von Karman facility

at SBT / CEA-Grenoble / France

SHREK facility was developped as a joint effort by:
SBT, CEA-Grenoble;  Intitut Néel, CNRS, Grenoble;
SPEC, CEA-Saclay; ENS-Lyon, Lyon;
LEGI, U. Joseph Fourier, Grenoble;

France

NCTR3, Les Houches, March 18th, 2014
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[5/5] Fiona and Shrek

To infinity and beyond!! .... Re = 10°!

Flow Instability Observation usiNg Anemometers
on the

Superfluid High REynolds
von Karman facility

at SBT / CEA-Grenoble / France

FIONA & SHREK

iy 5
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[5/5] Fiona and Shrek
To infinity and beyond!! .... Re = 108!

Some numbers...

Temperature [K] 2.3 1.9
Kinematic viscosity [m?/s] 21078 9.4310~°
Frequency [Hz] 2 1
Velocity (prop rim) [m/s] 4.8 2.4
Reynolds number Re 9.6107 108
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[5/5] Fiona and Shrek
To infinity and beyond!! .... Re = 10°!

2000 | of fluid He (normal or superfluid) experiment: 1.8 <+ 3K

NCTRS3, Les Houches, March 18th, 2014

[5/5] Fiona and Shrek
To infinity and beyond!! .... Re = 108!

2000 | of fluid He (normal or superfluid) experiment: 1.8 <+ 3K
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[5/5] Fiona and Shrek

To infinity and beyond!! .... Re = 10°!

2000 | of fluid He (normal or superfluid
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[5/5] Fiona and Shrek
To infinity and beyond!! .... Re = 108!
)

2000 I of fluid He (normal or superfluid

NCTRS3, Les Houches, March 18th, 2014
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experiment: 1.8 <+ 3K
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[5/5] Fiona and Shrek
To infinity and beyond!! .... Re = 10°!

2000 | of fluid He (normal or superfluid) experiment: 1.8 <+ 3K
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[5/5] Fiona and Shrek
To infinity and beyond!! .... Re = 10°!

2000 | of fluid He (normal or superfluid) experiment: 1.8 <+ 3K
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[5/5] Fiona and Shrek
To infinity and beyond!! .... Re = 10°!

2000 | of fluid He (normal or superfluid) experiment: 1.8 <+ 3K

NCTRS3, Les Houches, March 18th, 2014

[BONUS] MHD
Effects on the Dynamo Action
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[BONUS] MHD

Problem formulation
Governing Equations (MHD approx.):

—

oB = — 5
g_|_(b—;.v)B:<B~V)ﬁ-|—nV23
i o, 1 o1 ) « BB
g‘F(u-V)u:—EVp—l—szu—F%(VXB)XB+Fext
V.i=0 V.B=0

Adimensional numbers:

UL UL R
Rim= = =ULwo  Re=-- Pm=—"

NCTRS3, Les Houches, March 18th, 2014

[BONUS] MHD

Problem formulation
Governing Equations (MHD approx.):

) S S -
5 +(@V)B= (B-V)ﬁ+nVZB
dii 1 1 B) x B+ E
_u_|_(1,_[.V)1,_[: ——Vp+VV3ii+ — (VxB) X B+ Fex
ot p PHo
V.i=0 V-B=0

Adimensional numbers:

But, v < n for most neutral conducting fluids = Re > Rm
=-Fully developped turbulence !

Typically, v ~ 1071, so for a Rm = 100 we need a Re = 10!
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[BONUS] MHD

Dynamo Experiments

Homogeneous dynamos:

von Karman Sodium (Cylindrical geometry)

(CEA Saclay + CEA Cadarache + ENS Paris + ENS Lyon)
— Successfull! PRL 98 (2007) 044502 (Iron propellers)
— Unsuccessful with stainless steel propellers

University of Wisconsin (Spherical geometry)

University of Maryland (Spherical geometry )

University of Perm (Toroidal geometry)

New Mexico (TC dynamo)

Others

NCTRS3, Les Houches, March 18th, 2014
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Our approach

1st Step:

Below the dynamo threshold (E = 0), the conducting fluid is
equivalent to any other fluid with similar hydrodynamic properties
= We use a water experiment to determine u:

dii . .. 1 q -
g—l—(u-V)u:—BVp—l—VVzu + Foyy
2nd Step:

We analyze the effect of this flow numerically in a kinematic code:

—

%—f:Vx (L‘ixﬁ)—i—nvzﬁ
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Kinematic dynamo

OB

—:Vx(*xB’) V2B
5 U +M

The usual “weak” aproximation:

e Axisymmetric, stationary flow
(preserving the equatorial symmetry).

NCTRS3, Les Houches, March 18th, 2014
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Kinematic dynamo

—

aa—f:Vx (ﬁx§)+nV2§

The usual “weak” aproximation:
e Axisymmetric, stationary flow
(preserving the equatorial symmetry).

Here, we will consider:

(a) Axisymmetric, but with two symmetric solutions
and “periodic” reversals (very low frequencies)
(b) Non-axisymmetric flows, without reversals
(low frequencies)

NCTR3, Les Houches, March 18th, 2014
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[BONUS] MHD
Kinematic dynamo

Pseudo-spectral code:
Finite differences in r and Fourier in 0,z

an m(r)exp [i(m0+n2nz/H)]

Rm definition: Rm = max{U(r,0,z)} R/n
Magnetic energy growth rates:
Em,n = ¢Omn!

We only considere the symmetric part:

NCTRS3, Les Houches, March 18th, 2014 32
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Effect on the dynamo threshold

(a) Equatorial symmetry broken:

Slowly evolving axisymmetric flows:
‘7N + ‘75 ‘7N — ‘75
> +/qmod

Voo (1) = Vs + ApoaVp cos (o) = cos ()

Vn and Vg are the velocity fields where the N or § side
dominates. (In the following, A,,,,q = 1)

For example, for t = 0:

o}
os|

D q
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02f

o

Y 05 o 05 1
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Effect on the dynamo threshold

Rm definition used:

Rm = max {Vo(t)}R/M

Magnetic energy growth rates:

)

NCTRS3, Les Houches, March 18th, 2014
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Effect on the dynamo threshold

Time-dependent velocity field:
Frequency 100 5

Oscillatin
Velocity Field

Magnetic Field

Time: 0/50

NCTR3, Les Houches, March 18th, 2014
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Effect on the dynamo threshold

Growth rates vs. the frequency

NCTRS3, Les Houches, March 18th, 2014
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Effect on the dynamo threshold

(b) MHD analysis of real 3D flows (equatorial vortices):
Large scales can be very important— vortices

NCTR3, Les Houches, March 18th, 2014
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Effect on the dynamo threshold

(b) MHD analysis of real 3D flows (equatorial vortices):

(3D kinematic dynamo)

107*

o
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107"

magnetic Energy
5
&

1072+

PRE 87 (2013) (accepted) A. Giesecke, F. Stefani, J. Burguete
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Effect on the dynamo threshold

(b) MHD analysis of real 3D flows (equatorial vortices):

(3D kinematic dynamo)

(a) (b)
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Conclusions

Main characteristics of this flow:
Re ~ 10°°°
Turbulence rate: 50-100%

Broken symmetries: Non-stationary,
Non axisymmetric (actually, m> 2)
Equatorial symmetry is broken (two mirrored states)

Random reversals
Inverse cascade due to angular momentum transport

Different Time scales:

Dissipation ~ 107s
Injection ~ 0.1s
Vortex motion ~ 10s
North — South inversion dynamics ~ 10%s

NCTRS3, Les Houches, March 18th, 2014

Conclusions
These turbulent flows have very slow dynamics

Symmetry breakings (equatorial and axisymmetry),
Vortices
Random inversions— simple model
many involved time-scales...

The dynamo threshold is very sensitive to the fluid flow
(kinematic approach)
Strong resonances appear for small windows of U, /Usor-

Equatorial vortices and reversals can help or destroy the
dynamo depending on their respective time-scales.
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