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3D Navier-Stokes Turbulence
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* Energy Y injection at large scales

* Energy dissipated at small scales for high Reynolds
number Re = VL /v

* Concept of inertial range if injection and
dissipation scales are well separated in scale space

* Conservative energy transfer by nonlinear term of
Navier-Stokes equations to small scales

* Local energy transfer (cascade) characterized by
constant energy flux €
Kolmogorov 1941 Theory

As Re — o0, the inertial range statistics depend only on
scale k and energy flux €
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Liguid Helium and Superfluidity

* Superfluidity is a state of matter in which the

fluid behaviour is like a zero viscosity fluid 1.0
/P

e Related to Bose-Einstein Condensation in 0.8 |-

Bose gases pi 06 L
* Superfluidity is observed in both helium-3 and —_

helium-4 0.4
* Occurs in helium-4 below the lambda 02 0/p

transition point: 7, = 2.17 K 0 ")

0 05 10 15 20
T(K)
Two-fluid model: At T' <1 K helium-4 is

more than 99% superfluid
* Below T helium-4 is composed of two coexisting fluids:

Normal (viscous) component with density On

Superfluid (inviscid) component with density Ps
* The two components coexist together to give total fluid density of p = pn, + Ps

* The relative densities of the two components is temperature dependent



Properties of the Superfluid Component

Hydrodynamical properties

* A completely inviscid fluid (no viscosity)

* Superfluid flow is irrotational flow w =V x v =0

What happens if we externally induce vorticity?

Vorticity appears through the creation of quasi-1D
topological defects (density of the fluid vanishes)

These are known as quantized vortices

* Every quantized vortex line is identical

* Vortex core is incredibly small: & ~ 1078 cm (for helium-4)

 Circulation is discretized in units of K = h/m

* Normal and superfluid components interact through quantized vortex lines by mutual
friction




Superfluid Turbulence (Large Scales)

e Superfluid turbulence can defined as the study of the
chaotic motion of the superflow induced by a tangle
of quantized vortices

* Energy can be injected into the superfluid through
classical means (mixing, rotation) or through quantum
methods (counterflow)

* Polarization of vortex bundles mimic classical eddies
Classical

e Richardson cascade of vortex bundles vortex tubes

* Kolmogorov picture also observed in superfluid
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Superfluid Turbulence (Small Scales)

How is energy dissipated in superfluid turbulence?

Finite (positive) temperature superfluid turbulence
* Interlocking of normal and superfluid components via mutual friction

* Energy in the superfluid is transferred to normal fluid and dissipated

Zero temperature superfluid turbulence
* Liquid helium solely consists of superfluid component p, =0, P = Ps
* No normal fluid to dissipate energy

* Phonons are suggested to be responsible for energy dissipation

How does energy reach phonons?
* The cascade of polarized vortex bundles breaks down at scales < ¢
* Phonon scale is much smaller than the typical mean inter-vortex distance ¢

* There must exist another mechanism that allows energy to reach such small scales

Hypothesis
Energy transfer to propagating Kelvin waves



What are Kelvin Waves?

e Natural perturbations that occur on quantized
vortex lines

* Kelvin waves get excited by vortex reconnections

e Reconnection events excite Kelvin waves at scales
close to the inter-vortex distance /¢

* In the long Kelvin wave limit k¢ < 1, Kelvin
waves propagate with dispersion relation

~ kk? | 1 3
SN

* v~ 0.577... isthe Euler-Mascheroni constant

Kelvin waves are damped by mutual friction at finite temperatures 1 : |

Phonork

Kelvin wave cascade picture (zero temperature) out

* Kelvin waves of similar scale interact exciting smaller scale Kelvin waves

e Continues until the frequency is sufficiently high enough to excite phonons in
the superfluid

Small scale superfluid turbulence characterized by a Kelvin wave cascade



Superfluid Turbulence Crossover

large scales

Kolmogorov cascade ? Kelvin wave cascade small scales

scale of inter-vortex spacing a

10004

What lies in between?

Crossover region where energy is converted from a 3D :
energy cascade to that of a 1D Kelvin wave cascade 13

Kelvin
waves

k—5/3

Energy transfer by Kelvin waves is not as efficient as 13 Classical §
the classical picture ] cascade
0.14
Energy must stagnate?
0.01 o7 T o .
1. Thermalization (bottleneck effect) 00T o k1£ R
L'vov, Nazarenko, Rudenko, Phys. Rev. B, 76, 024520, (2007)
Energy stagnates and thermalizes until of sufficient 3 2
intensity to excite Kelvin waves (bottleneck) 1 I
& Q . Kelvin
2. Hierarchy of reconnection mechanisms R — o waves
Kozik, Svisuntov, Phys. Rev. B, 77, 060502, (2008) £ 1 & e
c ] O
No stagnation! Energy reaches Kelvin waves via a § 1= e
series of different vortex reconnection mechanisms £12
c | ©
1. Bundle-bundle reconnections < 1© 1 , , L
2. Inter-bundle reconnections { .
3. Self reconnections AN Ao My

Wave number k



Models of Zero-Temperature Superfluid Turbulence |

The Gross-Pitaevskii equation Madelung transformation

. 2 _ 10
iU = —V2U + U 7| V=pe
where O = ‘\Ij| and v = V0
A model for weakly interacting Bose gases (Bose-Einstein Condensation)

* Hamiltonian dynamics (energy conservation)

* Equivalent to time-dependent Bernoulli
equation for irrotational compressible flow
with additional guantum pressure term

Properties of Gross-Pitaveskii turbulence

e Quantized vortex lines with well-defined
vortex core structure

* Vortex reconnections

*  Phonons emission

* Observed Kolmogorov spectrum in o & "

incompressible energy spectrum at large scales
Sasa et al., Phys. Rev. B, 84, 054525, (2011)



Models of Zero-Temperature Superfluid Turbulence Il

The vortex filament model schwarz, Phys. Rev. B, 31, 5782, (1985)

* Approximate quantized vortex lines as 1D space curves

* Velocity field is constructed through the Biot-Savart equation

K S—r
= x d
v(r) 4#745 s o S

* Quantized vortex lines are advected by the the
self-induced velocity field S = v

Comparison to Gross-Pitaevskii equation 10° 5

No vortex core structure

E(K) [em®/sec?]

No nature vortex reconnection mechanism 107

Incompressible model (no phonons) ' '1(')1 ' T "i(l)z

k [1/cm]

Observed Kolmogorov spectrum at large scales SN W
(c) (d)

Araki, Tsubota, Nemirovskii, Phys. Rev. Lett., 89, 145301, (2002)
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Summary |

Classical (normal fluid) turbulence
e Vorticity is distributed across a wide range of scales in for form of eddies

* Kolmogorov energy spectrum up to viscous dissipation scale

Superfluid turbulence
* Vorticity is confined to extremely thin identical vortex lines of fixed circulation
* Polarized vortex bundles act as large scale (classical) eddies
* Observed Kolmogorov energy spectrum up to the mean inter-vortex distance

* Phonons are responsible for energy dissipation at zero temperature
* Kelvin waves transfer energy from the inter-vortex distance to phonons

Kelvin wave dynamics play an essential role in zero
temperature superfluid turbulence



Il. Theoretical setup of Kelvin Waves
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Wave Turbulence Theory

Definition
Wave turbulence is the non-equilibrium statistical description of weakly
interacting dispersive waves

Non-equilibrium
* Forcing and dissipation are required to sustain turbulent state
Statistical

* Many degrees of freedom
Weakly interacting

* Weak nonlinear coupling is required
Dispersive

* Non-dispersive waves are tougher to deal with theoretically

Applications Books

* Water (gravity, capillary) 1. Zakharov, L'vov, Falkovich, Kolmogorov Spectra of
 Plasmas (Alfvén, drift, sound) Turbulence I: Wave Turbulence, Springer, (1992)

«  Optics, BECs, superfluids (phonons, Kelvin) 2. Nazarenko, Wave Turbulence, Springer, (2011)

* Geophysical (Rossby, inertial)
* Vibrating plates (elastic waves)
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Starting Point

Many wave systems possess a Hamiltonian structure described by natural canonical variables

* Consider the Hamiltonian A with canonical coordinates ¢(x, ¢) and momenta p(x,t)
dg o0H Op  OH
o~ dp’ It bq
. EquivalentIY express quilton's equati(?ns in (x,1) = Ag +ip/ A
terms of a single canonical complex variable: \/§

i@ _ 0H
ot  da*

Then Hamilton’s equations are equivalent to:

Fourier Representation

* A natural representation is in Fourier space

Z ax(t) exp (ik - x)

* Evolution of each modes is given by

Z,{?a,k o 5H
ot day.




s
Hamiltonian Structure

Wave turbulence theory relies on weak nonlinearity to provide a small parameter €
to enable an expansion of the Hamiltonian in powers of the wave action variable ak

Naively, we can assume that the wave amplitudes are small: |ax| ~ € < 1

Expand H in powers of €

H="Ho+ Hint Hint = Hs +Hg +Hs + - --

H,, describesn -wave processes

Weak nonlinearity implies Ho > Hg > Ha > - - -

Ho = E wkakal*{ correspond to linear energy of linear propagating waves
k

* Nonlinearities manifest themselves in terms of higher order powers of ak

e.g. 3-wave interactions:

Hs = Z V21,3 (a1a5a3 + ajasas) 6(ky — ko — ks)
1,2,3

Interaction coefficient: V2173 == V(kl, k2, kg) Notation: a1 = ak,
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Wave Amplitude Evolution Equation

* Explicitly, the mode evolution equation is

0 OHin
Zﬂ = Wkak + L

ot

*
5ak

* For linear dynamics, we observe that the complex mode ak rotates by the linear
frequency

* Nonlinear mode coupling (wave mixing) is characterized by the interaction
Hamiltonian #;,,:

* Many interesting cases possess scale invariance which is exploited by WT theory
w(Ak) = A*w(k)

V (A\ki, Aka, Aks) = AV (ky, ko, ks)



Wave Turbulence Theory for Kelvin Waves

Wave turbulence theory can only be applied to Kelvin waves in the most idealized setups

* The most natural setup is studying Kelvin waves on 1D quantized vortex lines

* We consider the vortex filament model description: r=y=0
A
K r —s l
= — 7 X dr |
4 L ’r — S|
Theoretical setup |
e Consider a single, quantized vortex line along g’ - s = [z(2), y(2), 2]
xr=y=20 and periodicin z ——
I
* Parametrize 2D perturbations by s = [z(2), y(2), 2] I
« Assume that z(-) and ¥(-) remain single valued |

Z
(no self crossings) | | y
* Define a complex canonical variable: a(z) = x(z) + iy (2) r
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Hamiltonian Description of Kelvin Waves

* The idealized setup just described can be written in terms of a Hamiltonian for a(z2)

da  OH 1+Re[ “(21)d’(22)]

le de

(21 — 22)° + |a(z1) — a(z2)|?

Svistunov, Phys. Rev. B, 52, 3647, (1995)

* Observe that the Hamiltonian is divergent as |21 — 22| — 0
Interpret £ as

« Regularization of integral by introducing cutoff |21 — 22| = & ,
vortex core radius

Additional conserved quantity
N:/\a(z)|2 dz Wave action

Weak nonlinearity expansion

o . . _la(z1) — a(z2)]
* The small parameter in this problem is the Kelvin wave steepness ¢ = 21— 2] <1
1 — %2

H=Ho+Hs+ He+ -

* Only even powers of a appear in the Hamiltonian (associated to wave action conservation)
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Dual Cascade Scenario

In systems with more than one invariant, we can get more than one cascade

* Inthe weak nonlinear regime the energy can be approximated by the linear
energy:

H%,HQ

* As H is conserved, then in the weakly nonlinear limit 2 will also be conserved at
leading order

* By assuming linear energy conservation, we have two sign-definite quadratic

invariants:
Ho = g Wk ax Oy, N = g axay
k k

* Expect two constant flux cascades (c.f. two-dimensional turbulence)

Figrtoft Argument Fjgrtoft, Tellus, 5, 225, (1953)
Inertial Range Inertial Range

Wave action Energy
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Hamiltonian Fourier Representation

: —1/2 :
* Natural Fourier mode representation @ = K / Z ax(t) exp(ik z)
k
* We consider the first three Hamiltonian terms: H = Hs + Ha + Hs

1,2,3 1,2,3
H = g Wk Ak O + g T34 ajasazay 0 g W, 56 arazazazazag s’
1234 123456
1,2 1,2 _
0373 = 0 (k1 + ko — k3 — ky) Ty = T(ki, ka, ks, kyg) a; = ak,

Y

Interaction coefficient expressions

i 1n(e)

T:%l,f :—4—k1k2k3k4—F [5k1k2k3k4 + f;f]
1,2,3 9A 9 1,2,3
Wiis = likekakakskot oo [7k1k2k3k4k5k6 + gl 5,6}

* We separate the logarithmic divergent terms by introducing an effective scale /. ;¢

. F;f nd Q4 ® are terms containing many logarithmic contributions



Local Induction Approximation

At leading approximation in A the Hamiltonian can be simplified to

7—[——/\/1—|—|a >

This is equivalent to

. KA
S = I s’ x s’ The Local Induction Approximation
T

Evolution of each vortex line element is determined only by the adjacent elements

The LIA can be mapped to the one-dimensional nonlinear Schrédinger equation by the
Hasimoto transformation

LIA corresponds to integrable dynamics

Expect leading order LIA terms to not contribute to nonlinear Kelvin wave dynamics

Subleading O (AO) terms in the interaction coefficients are essential for
describing nonlinear Kelvin wave dynamics




e
Nonlinear Wave Resonance Condition

Consider the Kelvin wave Hamiltonian up to the leading nonlinear term:H = Ho + Ha

Mode evolution equation

j0me _ 0N
ot day

1,2
— Wrak + g T3 k a1G20a5 (53 I
1,2,3

e Fast linear oscillation by frequency wk
* Change into the rotating coordinate frame by, = ay exp (i wy t)

8bk
B 1,2
g b162b3(5 'k €XP ( zw3kt)
1,2,3
e Fast oscillating sum in time
* Main contribution in nonlinear term will be when wéi =wtwy—w3—wk =0

* Nonlinear interactions are dominated by waves satisfying

kit ko = kg +k Four-wave

w1 + Wo = w3z + Wk process/
Four-wave resonance condition



Non-Resonant Four-Wave Interactions

What Kelvin waves satisfy the four-wave resonance condition?
ki + ko =ks+ky, witws=w3+ws

*  Kelvin waves have a dispersion relation wi o k*log(k¢)

For one-dimensional systems:

Dispersion relations wx o< k™ with o > 2 only yield trivial four-wave resonances

Graphically: Wk This is the only intersection
and is always when
//kl = k3 and k2 = k4
CU1—|—CU2:(U3+CU4 ________________ - or k1:k4 and k2:k3
i
w3 i
I
i
w1 :
!
k
k; ks ki + ko
= k3 + ky

Trivial resonances do not transfer energy at leading order



Canonical Transformation

e |f there are no non-trivial four-wave resonances we must consider the next order Hg

* However, we would also like to eliminate the non-resonant four-wave term by changing
coordinates
Canonical transformation

ax(t) = cx(t) + O (ci)

e We can choose the structure of the CT to eliminate the
non-resonant four-wave termH4

* The penalty is in the introduction of a six-wave correction

H= Zwkakalk + Z Wl 2—|a*—a*—5£2 \

36 a a
1,2,3,4,5,6 processes

1
+ = z Wl’z’3 ahm@@g@éﬁgg Six-wave I

The non-resonant four-wave terms play an

important role in the next order contribution \ /
Six-wave resonance condition > (T :
ki + ko + ks =ks + ks + kg / \

W1 + W2 + W3 = W4 + Ws + Weg
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Explicit Expression of the Six-Wave Kernel

To understand Kelvin wave interactions it is essential to determine the six-wave
interaction coefficient exactly

e Recall, that the Hamiltonian interaction coefficients were separated in logarithmic
divergent O(A) terms and order one contributions:

w=wt+w, T=T+T'" W=wr4+w!
* Using the expressions obtained from the canonical transformation and making an
expansionin A
Six-wave interaction coefficient expression of Hg

TA o TA T oTh TAoTI TATA
W=y Doy O TeT T s o (1)
w w w (

Divergent terms that ting lead 4
correspond to LIA Resulting leading order terms

describing Kelvin wave interactions

cancel each other
=0

11,23 . ~
« Wy55 consists of over 20,000 terms, but we know that TV, > o kikokskykskg

JL, L'vov, Nazarenko, Rudenko, Phys. Rev. B, 81, 104526, (2010)
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Summary |l

Formulated the Kelvin wave setup
* Single periodic vortex line modelled by the Biot-Savart equation

Hamiltonian representation
* Dual invariant dynamics — energy and wave action conservation
* Computed the explicit expressions for the interaction coefficients

Four-wave resonances are absent for the Kelvin wave problem
* One-dimensionality and the structure of the linear frequency

Canonical Transformation
* Removed non-resonant four-wave terms
* Leading resonant interactions are six-wave terms

Six-wave interaction coefficient
« Performed a A~ !-expansion
* Leading (divergent) A contribution vanish through integrability of LIA
* NextO (AO) terms are the relevant ones for Kelvin wave interactions



Ill. Wave Turbulence Theory
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What Do We Want From a Statistical Description?

* Ideally, we would like the full joint PDF P(ay, (t1), ax,(t2), .- .)

e Usually, we start with single time correlator functions:

Cs(k1, ko) = (ax, ay, )
C4(k17 ko, ks, k4) — <a’k1 Ak a’lts a’1*<4>

* Want to determine the evolution equations for the correlator functions
Closure problem
* Dynamics of correlators depend on higher order correlators

Wave turbulence theory provides a way to complete closure
Typical assumptions

* Ergodicity (ensemble averages can be replace by temporal averages)
 Random phases and random amplitudes

e Scale invariance

*  Weak nonlinearity
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Wave Turbulence Strategy

Of particular interest is the second order correlator function <Ckciil> = nyd (k — ki)

e 7Nk is known as the wave action density

Procedure

 Consider an e-expansion of the wave action variable: ck(T') = Cl({O) + e*e (1) + €8¢ (2) + -

* Solve each level using the amplitude equation
4
Ock 4 € 71,2,3 51:2:3
) 5 = WKCk n 5 K 6162030465 15k
1,2,3,4,5

 Substitute into nk = {ckci) and perform averaging using the random phase and
amplitude approximation

* Non-zero contribution from tenth order correlator that is represented as products of
second order correlators (quasi-normal approximation)

* Take infinite box limit followed by the weak nonlinear limit (equivalently long nonlinear
time limit) to obtain kinetic equation



Six-Wave Kinetic Equation for Kelvin-Waves

* The final expression of the kinetic equation is Collision integral

3nk _687T 1,1,2,3 /
8t T 6 4,5,k

251,2,3 S 1,2,3

4,5,k w4,5’k nN1na2n3nNaMsNKk
1 1 1 1 1

X

1
+ + — — — ] dk1 dk2 dk3 dk4 dk5

nk ns Ne ni no ns

Nonlinear evolution equation for the wave action density

Kozik & Svistunov, Phys. Rev. Lett, 92, 035301, (2004)

* Valid for weak nonlinearity and in the inertial range of scales

n
* We observe that the nonlinear evolution timescale 7,,; = kL =
(Ony/0t) €

e The integral on the right-hand side is known at the collision integral

* Energy spectrum is recovered from Ey = winy



e
The Stationary Kolmogorov-Zakharov Spectrum

Interested in stationary power-law solutions nx = C k™ of the kinetic equation where k& = |k|

* Solutions in which the five-dimensional collision integral is zero: —gtk =0

Zakharov Transform
e Coordinate transformation that wraps six sub-domains onto one

* Integrand will now be exactly zero over the whole new domain for stationary solutions

k2 kk kk kk kk
= =, k2: ~ 2) k3: ~ 47 k4: ~ = and k5: ~ 57
k1 k1 k1 k1 kl

« Collision integral becomes with ¥ = 5x — 15

ki

C5687T T — T T T T T T
0 =0T [ IR Sl Rkaklekokl (4 + I+ K — k5 b5 — )

]C Yy ]{ Yy k Yy k Y k Y
x Kf) + (?2) + <?3) - (f) - (f) —1] dk; dk, dks dk, dks

Thermodynamic solutions (zero flux)  Kolmogorov-Zakharov solutions (constant flux)

. 0 Equipartition _ —3  Constant wave
r=0 mcock of wave action K%zﬂ(—%wstuﬂb\?(elﬁergy SPREHHHX
=92 npox L—2 Equipartition y = Ek _ @(glgfgx%lﬁlgom;’@nt

of energy energy flux
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Locality of Kolmogorov-Zakharov Spectra

The Zakharov transform can only be applied if it does not result in divergences
* j.e.that the collision integral is convergent upon the solution

* Usually divergences will appear when either one or several of the integration variables
goto(or oo

Check for convergence when ky — 0O
, , " 1,2,3 1,2,3
* First we must parameterize the resonant condition 54,5,6 5(W4,5,6)
* In this limit, the integration over ks can be factorized out of the collision integral

k:*
% oc / k2 ny dks
0

Divergent for no o ky * with 2 > 3

* The direct energy Kozik-Svistunov spectrum nyx o 17/5

Kozik-Svistunov spectrum makes collision integral divergent

JL et al., Phys. Rev. B, 81, 104526, (2010)
What does this mean?

* There is a nonlocal (in scale space) energy transfer from Kelvin waves

* The wave turbulence prediction (under the assumptions of locality) of 1k X 175
is irrelevant and unphysical
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The Nonlocal Kelvin-Wave Theory

1
The kinetic equation is divergent and the divergence takes the form & = — / k2nk dk
K

*  Strongest divergence is when two wavenumbers vanish and singularity oc ¥

e Assume this occurs, and consider wave turbulence on slowly varying curved vortex line
due to two large scale modes

Four-wave kinetic €q uation L’vov, Nazarenko, Low Temp. Phys., 36, 785, (2010)

Onk :ESW/ 123
ot 12 k
1 1 1 1

+3\V1k’2’3|2n1n2n3nk [ — - — — ] 5&72’35 (wll{,2,3)} dk; dks dks

ni nk no ns

1 1 1 1

2 k k
ni1NaN3Nk [ — - - ] 51,2,35 (%,2,3)

Nk n1 no ns

Interaction Kernel: Vkl’z’3 x Ukkikoks
New constant energy flux Kolmogorov-Zakharov solution
By = wink = Oy kA e'/3 023 =5/3  [’vov-Nazarenko spectrum

e L’'vov-Nazarenko spectrum corresponds to local wave interactions

Effective local four-wave process on background of two large scale modes



Local/Nonlocal Debate

The proof of nonlocality has not been universally accepted by the community
z

>
>

Criticism — geometric symmetries a
* Nonlocal limit ko — 0 implies interaction is ;\
proportional to local tilt: W o< ko
2T
* Biot-Savart equation possesses tilt symmetry T

Reorient line to remove local tilt contribution

* Nonlocal interactions must cancel and so W oc k2 as ky — 0

Kozik-Svisuntov spectum is now local

Counter criticism /Q

*  Tilt symmetry does not prevent W o k, asymptotic

AN

e Tilt symmetry can only be applied in local
frame of reference Lebedev, L'vov, J. Low Temp. Phys., 161, 548,(2010)

Kozik, Svistunov, J. Low Temp. Phys., 161, 603, (2010)

Lebedev, L'vov, Nazarenko, J. Low Temp. Phys., 161, 606, (2010)

Kozik, Svistunov, Phys. Rev. B, 82, 140510, (2010)

Sonin, Phys. Rev. B, 85, 104516, (2012)

Lvov, Nazarenko, Phys. Rev. B, 86, 226501, (2012)

Sonin, Phys. Rev. B, 86, 226502, (2012)

* Globally, linear asymptotics still occur

Tilt symmetry arguments are irrelevant

Nouswne
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Summary il

Derivation of the kinetic wave equation
* Multi-scale expansion, random phase and amplitude approximation,
weak nonlinear and large box limits
* Studied steady state Kolmogorov-Zakharov solutions

* Energy spectrum solution leads to nonlocal wave interactions

Nonlocal Theory
* Local four-wave interactions derived from nonlocal six-wave interactions
* Four-wave interactions on slowly varying curved vortex line
* Slowly varying curved vortex line from two wave modes — 0

* Proof of nonlocality and nonlocal theory not universally accepted



IV. Numerical Simulations and Experiments
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ldentification of the Local/Nonlocal spectrum

* Exponents of spectra are close, however spectrum prefactors should be different

* We can compute the expected prefactor of the spectrum from the four-wave kinetic
equation
* Numerically compute the collision integral as a function of spectrum exponent

Four-wave collision Integral
I@) = [ (a2 (0= ol — af = a}) (L= af — 3 — )

x6(1—qi —¢5—¢3) 6 (1 — a1 — a2 — g3) dqi1dq2dqs

100, 10 * Collision integral is convergent for 2 < z < 9/2

* Vanishes on energy spectrum exponent z = 11/3
50 °
Ey=Cry kA e/3 U2/ |=5/3
0 ~ 366 11/3 3.675 e

Prefactor formula

—50¢ e —1/3

2 11/3 2 0, n = (1287)/3 (%) _ 0.304
dx r=11/3

Boué et al., Phys. Rev. B, 84, 064516, (2011)



Local Nonlinear Equation

Equation of motion in the nonlocal limit
JL, L'vov, Nazarenko, Rudenko, Phys. Rev. B, 81, 104526, (2010)

e Hamiltonian simplifies in the nonlocal limit:

i 41,52,5 _ 3 ki koksk ksk Logarithmic contributions go to
27 ko ks—0 AR unity (20,000 terms go to 1)

* Results in the physical space representation of equation of motion:

" a
0z

da & 0 |f, 1/0a
Z@t_ 41 Oz 410z

Nonlocal Kelvin wave interaction limit of the Biot-Savart equation
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Local Nonlinear Equation

The simplicity of the local nonlinear equation implies easy numerical computation

Y 2a
0z

Numerical Setup i@ B _ig A 1 @
ot 4w Oz 410z

* Single periodic vortex line

e Include spectral forcing at large scales Boué et al., Phys. Rev. B, 84, 064516, (2011)

« Additional dissipative terms (hyper- viscosity and friction) at both ends of Fourier
space to prevent bottlenecks and to create non-equilibrium stationary state

e QObservation of the L'vov-Nazarenko 10’
spectrum

e Numerical evaluation of ¥ and ¢

* Prediction of prefactor

Crum = 0.347

11/3
k'8 N,

*  Within 14% of analytical result:

Crn = 0.304




Biot-Savart Simulation |

Vortex filament model (Biot-Savart equation)

* Oscillate end of vortex line at a specific . K r —S
Kelvin wave frequency S = 1 5 X dr
TJe |r—s|
* Observed power-law wave action spectrum
behaviour
) —
* Numerical data could agree with any of the
theoretical predictions
1.7
i 0.01
1.6 — A
. g
£ :
= 14f N
go 1.3 /f”'m ] 0.001 |
E 1.2? / ] -
1.1 / . .
: ; Before theoretical
| 0.0001 Lo C
0 4x10* 8x10°  12x10°  1.6x10° 10 predictions 100
time (sec) Kk (1 /cm)

Vinen, Tsubota, Mitani, Phys. Rev. Lett., 91, 13501, (2003)
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Biot-Savart Simulation |l

* Simulation of the Biot-Savart equation in the Hamiltonian representation

Oa  O0H
IKk— =

ot  da* T 4nm / \/

1—|—Re[ *(z1)d’ (22)]

le dZQ

(21 — 22) ? la(z1) — a(z2)‘2

* Scale-separation scheme to approximate far field contributions

* Increases efficiency of the computation
from N2 - NIn N

e Decaying simulation W|th an Initial
condition of i o k~°

e ny o kL5 scaling observed at high
wavenumbers

7y arb. units)

* Finite capacity spectrum so transient
scalings in decaying setup should agree
with theory

cutoff

Kozik & Svistunov, Phys. Rev. Lett., 94, 025301, (2005)
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Biot-Savart Simulation Il

* Vortex filament model without any far

field approximations 100 |
K r—=s -1 [
=~ ¢ — = xdr 10
A Jo v — s| 1072 |
Q.
=2
« Additive forcing and (exponential) s 107
dissipation filter at each time step 10-4 L
* Non-equilibrium stationary state reached ;-5 |
from rest
, 107°
e Evaluation of energy flux € and U 100
* |'vov-Nazarenko scaling observed k
* Estimation of spectrum prefactor 3107
Crum = 0.318 2 \

* Within 5% of analytical result C';, xy = 0.304 Lt \
0 |

* Assuming agreement to Kozik-Svistunov 101 102
spectrum we get I

Crum = 87 x 1073 Baggaley & JL. Phys. Rev. B, 94, 025301, (2014)
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Gross-Pitaevskii Simulation

Krstulovi¢, Phys. Rev. E, 86, 055301, (2012)

i = —V20 + U |9 2

e Decaying simulation of an initial large-scale
distribution of Kelvin waves on GP vortex

* Vortex core accurately tracked

* Wave action spectrum constructed from
position of vortex core

* Nonlocal Kelvin wave prediction of L'vov- .
Nazarenko within error bars Cloud of excited phonons

L——

< RUNI
——RUN Il
—+—RUN Il
——RUN IV

S
--

-3.753+0.17




Experimental Observation of Kelvin Waves

Entry #: 84206

Visualization of Kelvin waves
on quantum vortices

Enrico Fonda'?3, David P. Meichle', Nicholas T. Ouellette?,
Sahand Hormoz®, Katepalli R. Sreenivasan®, Daniel P. Lathrop!

'University of Maryland, 2Universita di Trieste, *New York University,
“Yale University, °University of California - Santa Barbara
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Conclusions

Kelvin waves play a key role in the small scale energy transfer in ST
* Permit energy to reach extremely small scales for phonon emission in the zero

temperature limit

Considered a Hamiltonian formulism for Kelvin waves
* Theoretical treatment applied to an idealized Kelvin wave setup

Wave turbulence theory of the Kelvin wave problem
* Leading order integrability (LIA), non-resonant four-wave interactions
e Extremely complex final six-wave interaction coefficient
* Nonlocality of the Kolmogorov-Zakharov energy spectrum
* On going debate about nonlocality proof

Kelvin waves in numerical simulations and experiments
* Local and nonlocal energy spectra are almost indistinguishable
* Computation of spectrum prefactor as an alternative way to identify spectra
e Latest numerical simulations seem to agree with nonlocal theory



