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Introduction 

• rotation: perhaps the simplest anisotropising influence on turbulence; 
 
• most theoretical studies of rotating turbulence have assumed 
     homogeneous and unbounded; 
 
• the wave-turbulence approach has been applied to unbounded rotating 
     turbulence (Galtier 2003, Bellet et al. 2006): energy transfer between 
     resonant triads; 
 
• however, turbulence is never really unconfined and homogeneous; 
 
• there is a considerable literature on wave turbulence confined in all 
    three dimensions (Nazarenko 2011, chapter 10): discrete modes. 
 
It is of interest to study the intermediate case of confinement in just 
one direction: modes remain continuous, but turbulence is affected 
by confinement. 



Formulation of the problem 
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• decaying rotating turbulence confined between solid walls 
• zero mean flow 
• homogeneous and isotropic in             , but not 
• small initial Rossby number: 
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Formulation of the problem 

Ekman number 

• small Rossby number ⇒ weak nonlinearity 
• small Ekman number, otherwise turbulence killed by viscosity 
     before nonlinearity intervenes 
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Modal basis set 

Dropping the nonlinear and viscous terms ⇒ inertial waveguide 
modes:  
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Modal basis set 

Visualisations of two particular modes: 
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Streamlines and contours of out-of-plane 
velocity component: the pattern moves to 
the right. 



Modal basis set 

The modal velocity fields form a complete set for solenoidal 
vector fields for which              at the walls: 

mode amplitude 

• the modal basis is orthogonal 
• taking the inner product of the momentum equation with the modal 
    basis gives an evolution equation for the mode amplitudes … 
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Amplitude equation 

• * = complex conjugation 
• amplitude evolution due to viscosity and nonlinearity 
• two types of viscous damping 
• three-mode nonlinear interaction 
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Treatment of the wall viscous term: 
closure of the amplitude equation 

Wall damping due to Ekman pumping by the boundary layers. 

{

( ) ( ) ( )( ) ( ) ( ) ( )

Viscous
damping

* * 2

,

Nonlinearity

,n n np q

p q p q

p q

n
n n

i k p t
nn n n n

n n

a a
t

e N a a d
ω ω ω∞ + + +

=−∞

∂
+ Δ =

∂

− −∑ ∫
k p

k p p k p p
1 4 4 4 4 4 4 4 4 4 4 4 442 4 4 4 4 4 4 4 4 4 4 4 443

The above amplitude equation is exact, but the wall viscous term ⇒ 
it is not closed.  Assuming small Rossby and Ekman numbers from 
here on, linearised boundary-layer analysis can be used to express the 
wall term: 
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The spectral matrix 

Interpretation: 

Spectra are used to represent the energy distribution of 3D 
homogeneous turbulence.  The equivalent here is a spectral 
matrix: 
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Spectral evolution 

The amplitude equation ⇒  

= spectral transfer matrix 

= third-order spectral moments 
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• usual closure problem 
• small Rossby and Ekman numbers ⇒ slow spectral evolution 



2D/wave decomposition 

At this point we would like to exploit the small Rossby number using 
the wave turbulence approach to closure.  However, there is a 
problem: 

           modes have zero frequency ⇒ they are nondispersive 0n =
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Evolution of the 2D component 

•            are indices which run over the values          and to which the 
     summation convention applies 
• both nonlinear terms are of              , but the oscillations of the 
     wave-forcing term ⇒ it has little cumulative effect over the long 
     time spans needed for evolution of        ⇒  

( ) ( ) ( )
2 11/ 2

30
Wall friction

Forcing by the
wave component

2 v vU UU U E E U dx
t x x x x x
α α

α β α α β
β α β β β

∂ ∂∂ ∂Π ∂
+ = − + − −

∂ ∂ ∂ ∂ ∂ ∂ ∫1 4 2 43
1 4 44 2 4 4 43

,α β 1, 2

( )2O ε

U

( ) ( )
2

1/ 2

Wall friction

2U UU U E E U
t x x x x
α α

α β α
β α β β

∂ ∂∂ ∂Π
+ = − + −

∂ ∂ ∂ ∂ ∂ 1 4 2 43

• evolves as a classical 2D flow with wall friction 
• initial time scale for evolution of 
• 2D inverse energy cascade ⇒ dominated by small      at the large 
            necessary for evolution of the wave component 
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Results of wave-turbulence analysis: 
energy equation of the wave component 

Applying wave-turbulence theory to determine                         ⇒ the 
energy equation of the wave component is 
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• remarkably, the above system of equations is closed (the 
      contributions to the right-hand side have cancelled out) 
• only the diagonal elements of           (energy distributions) appear  
• the right-hand side describes energy transfer between resonant 
      triads of            modes 
• the second term on the left describes viscous dissipation 
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Results of wave-turbulence analysis: 
energy equation of the wave component 

• the energy distributions of the wave component evolve on a time 
      scale of  
• the total wave energy is conserved by resonant triad interactions 
• the above equation preserves positivity of          (realisability) 
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Results of wave-turbulence analysis: 
sample resonance curves 
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Results of wave-turbulence analysis: 
wave-mode correlations 

For the off-diagonal elements of         (correlations): 
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Results of wave-turbulence analysis: 
wave-mode correlations 

The              contribution is 
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the large       considered here, the integral is dominated by  small     . 
Asymptotic evaluation leads to 
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Results of wave-turbulence analysis: 
wave-mode correlations 

In the absence of        , the integral 

would be the 2D energy,             .  Small      means that 
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⇒ decorrelation of             modes on a time scale asymptotically small 
compared with that,               , necessary for energy transfer between 
such modes. 
 
• the presence of the 2D component induces relatively rapid, but energy 
     conserving, decorrelation of the wave modes 
• this is presumably due to elastic (in the usual sense of energy conserving) 
     random scattering of the waves by 2D vortices 
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Conclusions 

F representation of the flow using inertial waveguide modes 
F derivation of the modal amplitude equations 
F spectral matrix: diagonal (energy) and off-diagonal (correlations) 
        elements 
F 2D/wave decomposition 
F 2D component: classical 2D flow, initial evolution 
F application of wave-turbulence analysis to the wave component 
F the wave energy distributions evolve independently of the 2D 
       component on a time scale                 due to transfer of energy 
       between resonant triads of modes          
F the wave mode correlations are strongly affected by the 2D 
       component, leading to decorrelation on a time scale 
F this can be interpreted as due to elastic random scattering by the 
       widely separated 2D vortices which make up the 2D component at 
       this stage of its evolution 
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Conclusions 

Summary of flow evolution at small Rossby numbers: 
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2D wave energy 

wave decorrelation 
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F the time scale                       is the usual large-eddy turnover time 
F                      is asymptotically larger, reflecting suppression of 
     nonlinear energy transfers by rotation away from resonance 
 
It remains to numerically implement the wave-energy equations and 
compare the results with DNS. 
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