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Introduction

* rotation: perhaps the simplest anisotropising influence on turbulence;

* most theoretical studies of rotating turbulence have assumed
homogeneous and unbounded;

* the wave-turbulence approach has been applied to unbounded rotating
turbulence (Galtier 2003, Bellet et al. 2006): energy transfer between
resonant triads;

* however, turbulence is never really unconfined and homogeneous;

* there 1s a considerable literature on wave turbulence confined in all
three dimensions (Nazarenko 2011, chapter 10): discrete modes.

It 1s of interest to study the intermediate case of confinement in just
one direction: modes remain continuous, but turbulence is affected
by confinement.



Formulation of the problem
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* decaying rotating turbulence confined between solid walls
* zero mean flow

* homogeneous and isotropic in Xis Xy b,ut not X,

e small initial Rossby number: E=u/2Qhn
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Nondimensionalisation {



Formulation of the problem
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* small Rossby number = weak nonlinearity
* small Ekman number, otherwise turbulence killed by viscosity
before nonlinearity intervenes



Modal basis set

Dropping the nonlinear and viscous terms = inertial waveguide
modes:

U, = W.(”)(x3;k)exp{ik1x1 +ik,x, —iw, (k)t}
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p= (I)(”)(x3;k)exp{iklx1 +ik,x, —iw (k)t}

n

Modes parametrised by:
k = (k1 , kK, ) 2D wave vector
—00 < )] < 00 mode order (integer):
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nir

Mode frequency: @, (k ) = (k2 5 ) 5
+nJr

“Discretisation of the X; wave vector component”



Modal basis set

Visualisations of two particular modes:
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Modal basis set

The modal velocity fields form a complete set for solenoidal
vector fields for which u, =0 at the walls:

u,(x,1) =
i fan (k,l‘)VVi(”) (x3;k)€Xp{ik1xl +ik,x, —iw, (k)f}dzk
a, (k,t) mode amplitude

* the modal basis is orthogonal
* taking the inner product of the momentum equation with the modal
basis gives an evolution equation for the mode amplitudes ...



Amplitude equation
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Nonlinearity
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* * = complex conjugation
* amplitude evolution due to viscosity and nonlinearity

* two types of viscous damping k+p+q="0
* three-mode nonlinear interaction
ntn,tn, = 0



Treatment of the wall viscous term:
closure of the amplitude equation

The above amplitude equation is exact, but the wall viscous term =
it is not closed. Assuming small Rossby and Ekman numbers from
here on, linearised boundary-layer analysis can be used to express the
wall term:

da,
al’ n }’l

Viscous
damping
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Nonlinearity
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Wall damping Volumetric damping

Wall damping due to Ekman pumping by the boundary layers.



The spectral matrix

Spectra are used to represent the energy distribution of 3D
homogeneous turbulence. The equivalent here is a spectral
matrix:

a (k,t)a (K,1)=A (kt)6(k-K)

Interpretation:

f udx, = E f A k t d 2k mean kinetic energy

n—_oo

A (k ) = energy distribution over modes (real and positive)
Anm

(k ) n # m = correlations between different mode orders

fAn ()= [T B L) dk =k,

Energy spectrum



Spectral evolution

The amplitude equation =

2 ()1 A () A () = T B3 T )

Vlscos1ty Nonlinearity

T (k)=

nm

S fels sty (cpe,,,, (k)

T, (k ) = spectral transfer matrix

®mn n, (k p) = third-order spectral moments

* usual closure problem
* small Rossby and Ekman numbers = slow spectral evolution



2D/wave decomposition

At this point we would like to exploit the small Rossby number using
the wave turbulence approach to closure. However, there is a
problem:

n = 0 modes have zero frequency = they are nondispersive

A precondition of wave-turbulence theory being dispersion, it cannot
be used for n =0 modes =

u, = %7 o+ Yi 2D/wave decomposition

2D wave

U, = [fa, (k.0) W (k) exp{ikx, +ikox, } K

* U independent of Xx; with U, =0, hence the name, 2D
* U slowly varying, whereas v oscillates over time spans of 0(1)



Evolution of the 2D component
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Forcing by the
wave component

* o, f areindices which run over the values 1, 2 and to which the
summation convention applies

* both nonlinear terms are of 0(82 ), but the oscillations of the
wave-forcing term = it has little cumulative effect over the long
time spans needed for evolution of U =

ou, 9 oIl °U 1/2
ot ox (VL) _aTJrEax ox, P} 4

B Wall fnctlon

* evolves as a classical 2D flow with wall friction

* initial time scale for evolution of O(g'1

* 2D inverse energy cascade = dominated by small & at the large
£t necessary for evolution of the wave component



Results of wave-turbulence analysis:
energy equation of the wave component

Applying wave-turbulence theory to determine 7, (k) (n = 0) => the
energy equation of the wave component is
34, (k)

T+2§R(An(k))/lm (k)

n=0

Con . (k) = resonance curve : @, (k) + o, (p) +w Qk + p‘) =0

* remarkably, the above system of equations is closed (the n,,n, =0
contributions to the right-hand side have cancelled out)

* only the diagonal elements of 4  (energy distributions) appear

* the right-hand side describes energy transfer between resonant

triads of n = 0 modes
* the second term on the left describes viscous dissipation



Results of wave-turbulence analysis:
energy equation of the wave component

* the energy distributions of the wave component evolve on a time
scale of 0(5‘2

* the total wave energy is conserved by resonant triad interactions

* the above equation preserves positivity of 4 (realisability)

D, (K:P) =8R(N,, , (K.p)N,,, (-k-p.p))

A (k0)=4N,, , (kp)|

n,p .\ nq(k +p)
(Pz + ”127772)3/2 ([k + pf + nj:rzf/z

rnpnq (kap)=




Results of wave-turbulence analysis:
sample resonance curves

Resonance curves:
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Results of wave-turbulence analysis:
wave-mode correlations

For the off-diagonal elements of 4 (correlations):

+(E:(k)+5m(k))z4nm(k)=0 n=m, n,m=0

* the sign of ?ﬁ(E: (k)+Z, (k)) controls the growth or decay of A4
* the surface integral should be interpreted as a Cauchy principal value



Results of wave-turbulence analysis:
wave-mode correlations

_ I < Do, (15D 4, , (P)
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The n, = 0 contribution is

Mnon, ap)Aoo( )
2 E fe. (k.p) i

Because the 2D energy has inverse cascaded to small wavenumbers at
the large &¢ considered here, the integral is dominated by small p.
Asymptotic evaluation leads to

RE, (k.0)~R(A, (k) + Qnal k> + n*? ] [ P E(p)p

e positivity = decorrelation of 7 = 0 modes



Results of wave-turbulence analysis:
wave-mode correlations

In the absence of p'l, the integral

ﬁ:o p'E,(p)dp

would be the 2D energy, 0(52 ) Small p means that
m(En (k,t)) >> g

=> decorrelation of 7 = ) modes on a time scale asymptotically small
compared with that, O(g'2 ) , necessary for energy transfer between
such modes.

* the presence of the 2D component induces relatively rapid, but energy
conserving, decorrelation of the wave modes

* this is presumably due to elastic (in the usual sense of energy conserving)
random scattering of the waves by 2D vortices



Conclusions

& representation of the flow using inertial waveguide modes

% derivation of the modal amplitude equations

% spectral matrix: diagonal (energy) and off-diagonal (correlations)
elements

% 2D/wave decomposition

% 2D component: classical 2D flow, initial evolution ¢ = 0(3‘1)

% application of wave-turbulence analysis to the wave component

% the wave energy distributions evolve independently of the 2D
component on a time scale O( &7 ) due to transfer of energy
between resonant triads of modes

% the wave mode correlations are strongly affected by the 2D
component, leading to decorrelation on a time scale o( &7

% this can be interpreted as due to elastic random scattering by the
widely separated 2D vortices which make up the 2D component at
this stage of its evolution



Conclusions

Summary of flow evolution at small Rossby numbers:

wave decorrelation

2D wave energy
— | — >
t=0(8_1) t=0(€_2)

& the time scale ¢ = O[&™") is the usual large-eddy turnover time
T = 0(5_2 ) 1s asymptotically larger, reflecting suppression of
nonlinear energy transfers by rotation away from resonance

It remains to numerically implement the wave-energy equations and
compare the results with DNS.



