

Relative dispersion of tracers in turbulent flows

Jérémie Bec

Laboratoire J-L Lagrange Université de Nice-Sophia Antipolis, CNRS Observatoire de la Côte d'Azur, Nice, France

Rehab Bitane, Holger Homann Giorgio Krstulovic, Simon Thalabard

bservatoire

Fluctuations in atmospheric transport

Fluctuations are important for risk assessments
 Models/Observations: space and/or time averages

Mean vs. meandering plumes

Averaged concentration is well described by eddy diffusivity

PDFs have tails rather far from Gaussian

Spatial correlations relates to relative motion of tracers

Atmospheric diffusion

Concentration field: passive scalar

$$\partial_t \theta + \boldsymbol{u} \cdot \nabla \theta = \kappa \nabla^2 \theta$$

Batchelor scale: $\ell_{\rm B} = \eta \sqrt{\kappa/\nu}$

 \triangleright

 $\eta = \varepsilon^{-1/4} \nu^{3/4}$ Kolmogorov viscous dissipative scale

- ν fluid kinematic viscosity ε kinetic energy dissipation rate ozone in air $\kappa \approx 0.14 \,\mathrm{cm}^2 \,\mathrm{s}^{-1} \Rightarrow \ell_{\mathrm{B}} \approx 0.8 \,\eta \approx 0.8 \,\mathrm{mm}$ 1µm aerosol $\kappa \approx 2.10^{-7} \mathrm{cm}^2 \,\mathrm{s}^{-1} \Rightarrow \ell_{\mathrm{B}} \approx 10^{-3} \,\eta \approx 1 \,\mu\mathrm{m}$
- ► Above $\ell_{\rm B}$, advection dominates \Rightarrow **Turbulent diffusion** (Taylor 1921) Lagrangian tracer: $\dot{\boldsymbol{x}}(t) = \boldsymbol{u}(\boldsymbol{x}(t), t) + \sqrt{2\kappa} \boldsymbol{\eta}(t)$ $\theta \approx$ PDF of the position $\langle |\boldsymbol{x}(t) - \boldsymbol{x}(0)|^2 \rangle = \int_0^t \int_0^t \langle \boldsymbol{u}(\boldsymbol{x}(s), s) \cdot \boldsymbol{u}(\boldsymbol{x}(s'), s') \rangle \, \mathrm{d}s \, \mathrm{d}s' + 2\kappa t \simeq 2(T_{\rm L} u_{\rm rms}^2 + \kappa) t$

$$\Rightarrow \ \partial_t \langle \theta \rangle = -\nabla \cdot \langle \boldsymbol{u} \, \theta \rangle + \kappa \nabla^2 \langle \theta \rangle \approx (\kappa_{\text{eff}} + \kappa) \, \nabla^2 \langle \theta \rangle$$

Fluctuations and relative dispersion

- Tracers = characteristics of the advection equation $\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{x}(t) = \boldsymbol{u}(\boldsymbol{x}(t), t) \implies \theta(\boldsymbol{x}(t), t) = \theta_0(\boldsymbol{x}(0))$
- Spatial correlations of the concentration $\langle \theta(\boldsymbol{x} + \boldsymbol{r}, t) \, \theta(\boldsymbol{x}, t) \rangle = \iint \langle \theta_0(\boldsymbol{x}_1^0) \, \theta_0(\boldsymbol{x}_2^0) \rangle \, p_2(\boldsymbol{x} + \boldsymbol{r}, \boldsymbol{x}, t \, | \, \boldsymbol{x}_1^0, \boldsymbol{x}_2^0, 0) \, \mathrm{d} \boldsymbol{x}_1^0 \mathrm{d} \boldsymbol{x}_2^0$ $p_2(\boldsymbol{x}_1, \boldsymbol{x}_2, t \, | \, \boldsymbol{x}_1^0, \boldsymbol{x}_2^0, 0) = \text{joint transition probability density}$ of two tracers $\boldsymbol{x}_1(t)$ and $\boldsymbol{x}_2(t)$
 - Scalar dissipation anomaly Fronts $\varepsilon_{\theta} = -\kappa \langle (\nabla \theta)^2 \rangle \rightarrow const$ when $\kappa, \nu \rightarrow 0$ with fixed Pr

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \theta(\boldsymbol{x}, t)^2 \rangle = \iint \langle \theta_0(\boldsymbol{x}_1^0) \theta_0(\boldsymbol{x}_2^0) \rangle \times \\ \partial_t p_2(\boldsymbol{x}, \boldsymbol{x}, t | \boldsymbol{x}_1^0, \boldsymbol{x}_2^0, 0) \, \mathrm{d}\boldsymbol{x}_1^0 \mathrm{d}\boldsymbol{x}_2^0$$

Larchevêque & Lesieur, J. Méc. 1981 Nelkin & Kerr, PoF 1981 ; Thomson, JFM 1996

Turbulent dissipative anomaly

Generalized flows and spontaneous stochasticity (Bernard *et al.*, J. Stat. Phys. 1998; Eyink, *Physica* D 2008)

$$|\boldsymbol{u}(\boldsymbol{x},t) - \boldsymbol{u}(\boldsymbol{x}',t')| \sim |\boldsymbol{x} - \boldsymbol{x}'|^h$$

 $h < 1 \Rightarrow \text{not Lipschitz} \Rightarrow \text{non-uniqueness}$

Onsager's conjecture: h < 1/3 in order to dissipate energy (Duchon & Robert, *Nonlinearity* 2000)

"Local 4/5 law":
$$\varepsilon(\boldsymbol{x},t) = -\frac{3}{4} \lim_{r \to 0} \frac{\langle \delta_r u^{\parallel} | \delta_r \boldsymbol{u} |^2 \rangle_{\text{ang}}}{r}$$

 \Rightarrow close relation between energy dissipation in the limit $Re \rightarrow \infty$ and singular behaviors in particle separation

Recently understood in the case of inviscid Burgers equation (Eyink & Drivas, arXiv 2014)

⋑

Backward-in-time trajectories of entropy solutions are Markovian $\boldsymbol{x}_1(t)$

 $\boldsymbol{x}_2(t)$

Pair dispersion

Statistics of the two-point motion $\mathbf{R}(t) = \mathbf{x}_1(t) - \mathbf{x}_2(t)$ $\langle \cdot \rangle_{r_0}$ conditioned on a fixed initial distance $|\mathbf{R}(0)| = r_0$

Batchelor regime:

ballistic separation at small times

 $\langle |\mathbf{R}(t) - \mathbf{R}(0)|^2 \rangle_{r_0} \propto (\varepsilon r_0)^{2/3} t^2$ for $t \ll \tau_{r_0} \sim \varepsilon^{-1/3} r_0^{2/3}$ turnover time Batchelor, Proc. Camb. Phil. Soc. 1952

Richardson–Obukhov law: explosive separation at large times

$$\left\langle |\boldsymbol{R}(t)|^2 \right\rangle_{r_0} \sim g \, \varepsilon \, t^3$$
 for $\tau_{r_0} \ll t \ll T_{\rm L}$

Richardson, Proc. Roy. Soc. Lond. 1926 Obukhov, Izv. Akad. Nauk SSSR 1941 Figure from Scatamacchia et al., *PRL* 2013

Difficult to observe numerically and experimentally because of the large temporal scale separation that is required: $\tau_{\eta} \ll \tau_{r_0} \ll t \ll T_{L}$ Review by Salazar & Collins \Rightarrow sub-leading terms? Mechanisms?

Numerics

LaTu: MPI pseudo-spectral solver (Homann et al. 2007)

Transition Ballistic/Explosive

Richardson diffusion

Assumption: velocity difference is **uncorrelated** \Rightarrow separation diffuses Transition probability $p_2(r, t | r_0, 0)$ $\partial_t p_2 = \nabla \cdot (K(r) \nabla p_2)$ $+ K41(Obukhov) \quad K(r) \sim \varepsilon^{1/3} r^{4/3}$ $\Rightarrow p_2(r, t | r_0, 0) \propto \frac{r^2}{t^{9/2}} e^{-C r^{2/3}/(\varepsilon t)}$ and $\langle |\mathbf{R}(t)|^2 \rangle_{r_0} \sim g \varepsilon t^3$

Explosive growth: limiting distribution independent of initial separation r_0

Formalized for the Kraichnan model (Gaussian, δ -correlated velocities) see Falkovich, Gawedzki, Vergassola, *Rev. Mod. Phys.* 2001

Shortcoming: velocity difference get uncorrelated on timescales O(t)Phenomenology \Rightarrow correlation time $\tau_r \sim r^{2/3} + r^2 \sim t^3 \Rightarrow \tau_r \sim t$

Distribution of distances

From the numerics:

Markov models

Assumption: acceleration differences are short correlated $\frac{\mathrm{d} \boldsymbol{V}}{\mathrm{d} t} = \boldsymbol{A} = \delta \mathrm{D}_t \boldsymbol{u} \quad \longleftarrow \text{ components correlated over a time } \mathrm{O}(\tau_{\eta})$

Central-Limit Theorem: $A \stackrel{\text{law}}{\equiv} \sqrt{\tau_{\eta}}$

$$oldsymbol{A} \stackrel{ ext{law}}{\equiv} \sqrt{ au_{\eta}} \mathbb{A}(oldsymbol{R},oldsymbol{V}) \circ oldsymbol{\eta}(t)$$
 when $t \gg au_{\eta}$

with $\mathbb{A}^{\mathsf{T}}\mathbb{A} = \langle \delta D_t \boldsymbol{u} \otimes \delta D_t \boldsymbol{u} | \delta \boldsymbol{u} \rangle$ correlations of acceleration differences conditioned on $\delta \boldsymbol{u}$

General form: {

$$d\mathbf{R} = \mathbf{V} dt$$
$$d\mathbf{V} = \mathbf{a}(\mathbf{R}, \mathbf{V}, t) dt + \mathbb{B}(\mathbf{R}, \mathbf{V}, t) d\mathbf{W}$$

Kurbanmuradov & Sabelfeld (1995); Sawford (2001)

 \Rightarrow Fokker–Planck equation for $p(\mathbf{r}, \mathbf{v}, t | \mathbf{r}_0, \mathbf{v}_0, 0)$

$$\partial_t p + \partial_{r_i} (v_i p) + \partial_{v_i} (a_i p) = \frac{1}{2} \partial_{v_i} \partial_{v_j} [B_{ik} B_{jk} p]$$

$(\boldsymbol{v}_0, 0)$

Admissibility condition: "well-mixing"

Consistency with Eulerian statistics $p_E(\mathbf{r}, \mathbf{v})$ is a stationary solution associated to an initial uniform distribution in space (Thomson 1991)

Time-correlation of acceleration

Conditional acceleration variance

1D illustrative model

Dimensional analysis and data suggest:

$$\begin{cases} \tau_{\eta}^{\rm loc} \sim (\nu/\varepsilon_{\rm loc})^{1/2} \\ \delta D_t u \sim \nu^{-1/4} \varepsilon_{\rm loc}^{3/4} \end{cases}$$

Noise amplitude: $\sqrt{\tau_{\eta}} \, \delta D_t u \sim \varepsilon_{loc}^{1/2}$ independent of the viscosity ν

One-dimensional version:

$$\begin{cases} dR &= V dt \\ dV &= \left[\epsilon + c \frac{|V|^3}{R}\right]^{1/2} \circ dW$$

Phenomenology

However: distribution of $|V|^3/R$ depends on the small-scale cutoff

Same mechanisms in turbulence?

The "local transfer rate" $[V^{\parallel}]^3/|\mathbf{R}|$ becomes stationary along Lagrangian pairs

Richardson explosive separation equivalent to the diffusion of velocity differences?? Independent of scaling solutions?

Compatibility with Eulerian intermittency? Well-mixing?

"Eulerian statistics" from the model

$$\begin{cases} dR = V dt \\ dV = \left[\epsilon + c \frac{|V|^3}{R}\right]^{1/2} \circ dW \end{cases}$$

Stationary solutions? Well mixing?

requires imposing boundary conditions at large scales R = L

$p(V|R) \approx$ Eulerian statistics

Spatial scaling is incompatible with the observed time behavior of separation

Non-universal exponent that depends on the choice of the small-scale boundary

Limits of Markov modeling

- Is acceleration really short-time correlated?
 - ⇒ OK for components but not amplitude (Mordant *et al., PRL* 2004)
 - ⇒ Stretched exponential correlations (non-mixing process)
- ls the asymptotic diffusion of velocities the mechanism explaining Richardson's scaling $R \sim t^{3/2}$?
 - ⇒ Is it compatible with the observed intermittent behaviors? e.g. for exit times (Boffetta & Sokolov, PRL 2002)
 - ⇒ Are finite-Re effects solely responsible for lack of scaling? (Scatamacchia et al., PRL 2013)
- Is turbulent relative dispersion really a Markov process?
 ⇒ Relation to Lévy walks / waiting times approaches
 - (Shlesinger et al., PRL 1987, Rast & Pinton, PRL 2011)
 - ⇒ Some deviations might be due to memory effects (Eyink & Benveniste, *PRE* 2013)

A piecewise ballistic approach

- Ballistic regime is key in the convergence to the explosive behavior
 - Build a simple model that reproduces some essential mechanisms

NB: Non-Markovian with respect to the continuous time

 $\begin{cases} \alpha_n = \delta u_n^{\parallel} / |\delta \vec{u}_n| \\ \beta_n = |\delta \vec{u}_n|^3 / (\varepsilon r_n) \end{cases} \quad \Delta t_n = \frac{|\delta \vec{u}_n|^2}{\varepsilon}$

Continuous-time random walk

$$\vec{r}_n \mapsto \vec{r}_{n+1} = \vec{r}_n + \Delta t_n \delta \vec{u}_n$$

 $t_n \mapsto t_{n+1} = t_n + \Delta t_n$

with Δr_n and Δt_n random variables that depends upon r_n and δu_n

The δu_n 's are independent

$$\begin{cases} r_{n+1} = r_n \sqrt{1 + 2\alpha_n \beta_n + \beta_n^2} \\ t_{n+1} = t_n + \varepsilon^{-1/3} \beta_n^{2/3} r_n^{2/3} \end{cases}$$

▶ K41 version: statistics of α_n and β_n independent of r_n ⇒ can be easily extended to intermittent statistics assuming $|\delta \vec{u}_n| \sim r_n^{h_n}$

Another scaling?

$$\begin{cases} r_{n+1} = r_n \sqrt{1 + 2\alpha_n \beta_n} + \beta_n^2 \\ t_{n+1} = t_n + \varepsilon^{-1/3} \beta_n^{2/3} r_n^{2/3} \\ \text{Change of variables:} \quad \gamma_n = \ln \frac{r_n}{r_0} - \frac{3}{2} \ln \frac{t_n}{\overline{t_0}} \\ \eta_{n+1} = \frac{3}{2} \ln \frac{\left(1 + 2\alpha_n \beta_n + \beta_n^2\right)^{1/3}}{\beta_n^{2/3} + e^{-\frac{2}{3}\gamma_n}} \\ \text{The } \gamma_n \text{'s are becoming stationary} \\ \text{large negative excusions} \\ (\text{tracers approaching each other): 1D random walk with positive drift} \\ \end{cases}$$

This suggests: $\left\langle \ln \frac{|\mathbf{R}|}{r_0} \right\rangle \simeq \frac{3}{2} \ln \frac{t}{\overline{t}_0} + \langle \gamma \rangle$ Var $\left[\ln \frac{|\mathbf{R}|}{r_0} \right] \simeq \operatorname{Var} [\gamma] = \operatorname{const}$ PDF $\left(\ln |\mathbf{R}| \right) \rightarrow \Psi \left[\ln |\mathbf{R}| - \langle \ln |\mathbf{R}| \rangle \right]$

$\ln (R/r_0)$ a multiplicative process?

- Extension to account for intermittency.
- Interpret time-irreversibility of pair separation