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Fluctuations in atmospheric transport

-
. .

7 Fluctuations are important for risk assessments

> Models/Observations: space and/or time averages



Mean vs. meandering plumes

7 Averaged concentration is well described by eddy diffusivity

.

2 PDFs have tails rather far from Gaussian

> Spatial correlations relates to relative motion of tracers



Atmospheric diffusion

7 Concentration field: passive scalar Ol +u -Vl = kV20
> Batchelor scale: /g =n+/k/v

n = e~ 1/4,3/4 Kolmogorov viscous dissipative scale

v fluid kinematic viscosity € kinetic energy dissipation rate

ozone in air /<;~Ol4cm28_1 = I ~ 0.81n ~ 0.8mm
Tum aerosol xk~2.10" ‘cm?s ! = I ~107°n~ 1um

» Above /g, advection dominates = Turbulent diffusion (Taylor 1921)
Lagrangian tracer:  a(t) = w(x(t),t) + V26 n(t)
6 ~ PDF of the position

(|a(t)—2(0)[) :/0/0(u(w(s),s)-u(w(s’),s’))}dsds’—|—2/<;t22(TLu?mS—|—/<;)t

= 0,(0) = -V - (uh) + kV?(0) = (ke + k) VZ(0)




Fluctuations and relative dispersion

> Tracers = characteristics of the advection equation
d
Salt) = ula(t),t) > 0(x(t),1) = bo(x(0))

7 Spatial correlations of the concentration
O(x +7r,t)0(x,t)) // (0o (x) Op(x9)) po(x + 7, x, t |2V, 29, 0) de)dx)

pa(x1, 2, t| 2], x5,0) = joint transition probability density
of two tracers €1 (t)and T2 (%)

7 Scalar dissipation anomaly

gg = —k((VO)?) = const
when k,v — 0 with fixed Pr
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Owpa(z, z, t|x!, 2, 0) dz)daxs

Larchevéque & Lesieur, /. Méc. 1981
Nelkin & Kerr, PoF 1981 ; Thomson, /FM 1996




Turbulent dissipative anomaly

> Generalized flows and spontaneous stochasticity
(Bernard et al., J. Stat. Phys. 1998; Eyink, Physica D 2008)

‘u(ma t) o ’LL(.’IZ/,t/>| ™~ "/B o m/|h
h <1 = not Lipschitz = non-uniqueness

7 Onsager’s conjecture: h < 1/3 in order to dissipate energy
(Duchon & Robert, Nonlinearity 2000)

3. <5rull|5ru|2>ang

“Local 4/5 law”: e(x,t) = —- lim
4 r—0 r

= close relation between energy dissipation in the limit Re — oo
and singular behaviors in particle separation

7 Recently understood in the case of inviscid Burgers equation
(Eyink & Drivas, arXiv 2014)

A

. Backward-in-time trajectories
of entropy solutions are
Markovian




Pair dispersion

> Statistics of the two-point motion R(t) = o,
( - ), conditioned on a fixed initial distance |R(

> Batchelor regime:
ballistic separation at small times

(R() - RO)P),, x (o) 12

for t < 7y ~ 5_1/3r(2)/3 turnover time

Batchelor, Proc. Camb. Phil. Soc. 1952
2 Richardson—-Obukhov law:

explosive separation at large times
(IR(@)F), ~get® for 7, <t < Ty,

Richardson, Proc. Roy. Soc. Lond. 1926
Obukhov, Izv. Akad. Nauk SSSR 1941

Figure from
Scatamacchia et al.,,
PRL 2013

Difficult to observe numerically and experimentally because of the large
temporal scale separation that is required: 7, < 7, K t < 17,

Review by Salazar & Collins = sub-leading terms? Mechanisms?

Ann. Rev. Fluid Mech. 2009




Numerics

LaTu: MPI pseudo-spectral solver (Homann et al. 2007)

Incompressible NS +
U T L Tt large-scale forcing

7.2.1074 0.05 1.85 9.6

+ 107 Lagrangian
trajectories

65 536 processes
on BlueGene/P

+ slight corrections to K41 ' l .




Transition Ballistic/Explosive

Taylor expansion:  (|R(t) — R(0)[?), = t*Sa(ro) +t (6u - Dyu) + O(t*)
Sa(rg) = <|5u|2%l - |
(du - 6Dyu) = QE<|5U’|2> — 9% rossover:
ro = 2n
o = 377

0~ 61 | Explosive regime + corrections

ro=8n | (|R() = R(0)7),, = g1+ C (to/t))

ro = 127
ro = 167
rog = 24?7
ro = 327
ro = 4877

v <] DOAS X + O

' 'v‘:"‘:%‘ A o g . .
' Ballistic regime + corrections
([R(t) = R(0)|*)r, = Sz(ro) t* — 2e ¢’

0™ 10° 10"

t/to Bitane et al. (PRE 2013)




Richardson diffusion

Assumption: velocity difference is uncorrelated = separation diffuses
TO/% Transition probability ps(r, t|7g, 0)
Op2 =V - (K(r)Vp2)

g + K41(Obukhov) K (r) ~ el/34/3

7“2

O p2/3
= po(r,t|rg,0) We Cre=/(et) 4nd <]R(t)\2>ro ~ get

Explosive growth: limiting distribution independent of initial separation 7

Formalized for the Kraichnan model (Gaussian, ¢-correlated velocities)
see Falkovich, Gawedzki, Vergassola, Rev. Mod. Phys. 2001

Shortcoming: velocity difference get uncorrelated on timescales O(t)
Phenomenology = correlation time 7, ~ P23 402 O = T, ~ 1




Distribution of distances

Comparison to Richardson distribution  po(r, t|rg,0) .

From the

numerics:
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broader tails due
to “trapping” at 7 S 1o

Rast & Pinton, PRL 2011

Richardson
distribution

Pendence on 7o
still visible

memory on the initial velocity dlstrlbutlon?

1 2 3

[r/<IR(t)I2 112 213




Markov models

Assumption: acceleration differences are short correlated
dV
dt

= A = dDyu —— components correlated over a time O(7,)

law

Central-Limit Theorem: A = /7, A(R,V)on(t) when t> 7,

with ATA = (6D,u ® 6D,u | du) correlations of acceleration
differences conditioned on du

dR=V dt Kurbanmuradov &

Sawford (2001)

General form: {

= Fokker—Planck equation for p(r,v,t|rg,vo,0)
1
Otp + O, (Vi p) + Oy, (ai p) = 5% Ov; | Bir. Bji )

Admissibility condition: “well-mixing”
Consistency with Eulerian statistics pe(7,v) is a stationary solution
associated to an initial uniform distribution in space (Thomson 1991)




Time-correlation of acceleration
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Conditional acceleration variance
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1D illustrative model

T#XZAJ(V/gkm

—1/4 _3/4
oDyu ~ v Eloc

Noise amplitude: /7, 0Dru ~ 5110/62 independent of the viscosity v

dR = Vdt
One-dimensional version: [ |V|3] 1/2

)1/2

Dimensional analysis and data suggest: {

—— dW

S Nal% dV €+ c I o
r =

not enough to prevent collapse: Crossover between

R — 0 at a finite time - Batchelor and

= cutoff at small scales R = g Richardson

Asymptotic “explosive”
scaling solutions
r (%
(t3/2 ’ t1/2)

incompatible with small-scale BC 10

< [R() = R(0)]* >

[S—
]




Phenomenology
V dt

371/2
dV [64—6%] odW

10

'V|?/R — stationary when t — oo

0 2 -200 -100

V()P - .
V(t) = / €+ c R(s) odW, — diffusion at large times

However: distribution of |V|?>/R depends on the small-scale cutoff




Same mechanisms in turbulence?

The “local transfer rate” [VI1?/|R| becomes stationary along
Lagrangian pairs
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Richardson explosive separation equivalent to the diffusion of velocity
differences?? Independent of scaling solutions?

-1

10

Compatibility with Eulerian intermittency? Well-mixing?




“Eulerian statistics” from the model

Vdi Stationary solutions?

VI

1/2
[e re ?] caw  Well mixing?

requires imposing boundary
conditions at large scales R =L

p(V|R) ~ Eulerian statistics

Spatial scaling is
incompatible with the
observed time behavior
of separation

Non-universal exponent
that depends on the
choice of the small-scale
boundary




Limits of Markov modeling

2 Is acceleration really short-time correlated?
= OK for components but not amplitude (Mordant et al., PRL 2004)
= Stretched exponential correlations (non-mixing process)

Is the asymptotic diffusion of velocities the mechanism
explaining Richardson’s scaling R ~ t%/2 2

= Is it compatible with the observed intermittent behaviors?

e.g. for exit times (Boffetta & Sokolov, PRL 2002)

= Are finite-Re effects solely responsible for lack of scaling?
(Scatamacchia et al., PRL 2013)

Is turbulent relative dispersion really a Markov process?

= Relation to Lévy walks / waiting times approaches
(Shlesinger et al., PRL 1987, Rast & Pinton, PRL 2011)

= Some deviations might be due to memory effects
(Eyink & Benveniste, PRE 2013)




A piecewise ballistic approach

> Ballistic regime is key in the convergence to the explosive behavior
7 Build a simple model that reproduces some essential mechanisms

Continuous-time random walk
Ty b Tyl = T + At, 01,
ty 5 a1 = tn + Aty

with Ar,, and At,, random
variables that depends upon
r, and du,,

NB: Non—Markovnan Wlth
respect to the continuous time

{ozn = Sull /|51, 16,2 41 = TnV/ 1 + 2008, + B2
Bn

At, = B
= |0, %/ () € tpy1 =1tyn + € Ugﬁi/?’ri/?’

The du,'s are independent

> K41 version: statistics of «,, and ,, independent of
= can be easily extended to intermittent statistics assuming  |§i,| ~ r/




Another scaling?

Tnil = Tn \/1 + 20,8, + B2 «— Multiplicative process in R
bnp1 =t + 2B «— Additive process in ¢

. n 3. 1ln _
Change of variables: ~, =1In I _ 2 Iy = 6—1/37%/3
T0 2 tO

3 (1+2anﬁn+ﬁ2)”3 °
Yn+1 = 5 In
2 +_e__7n

The Yn’s are becoming stationary =

large negative excusions
(tracers approaching each
other): 1D random walk with
positive drift

0 100 200 300 400 500 600 700 800 900 1000

This suggests: <ln ] ~ Var [y] = const

PDF(In|R|) — ¥[In|R| — {In |R|) ]




In (R/ro) a multlpllcatlve process?

3 separatlons
"a bit less than a
'decade in time

In i, ~ [ distribution

i i (but not exactly)

2z Numerical results are
compatible with the piecewise TR
ballistic scenario. v = In(|R|/ro) — (In(|R] /7o)

> Extension to account for intermittency.

2 Interpret time-irreversibility of pair separation




